GSE_ID RECNUM CONTACTPERSON SERIESTITLE SUMMARY CONTRIBUTORS EXPDESIGN PUBMEDID PAPER_ID SRA_STUDY_NUM SRR URL_SRR_SOURCE GSM SRA SRX ASSAYTYPE LIBRARYLAYOUT SRP BIOPROJECT 14025 1 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029266 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029266 GSM352202 SRA009988 SRX012330 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 2 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029267 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029267 GSM352202 SRA009988 SRX012330 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 3 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029268 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029268 GSM352202 SRA009988 SRX012330 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 4 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029269 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029269 GSM352202 SRA009988 SRX012330 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 5 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029270 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029270 GSM352202 SRA009988 SRX012330 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 6 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029271 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029271 GSM352203 SRA009988 SRX012331 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 7 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029272 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029272 GSM352203 SRA009988 SRX012331 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 8 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029273 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029273 GSM352203 SRA009988 SRX012331 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 9 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029274 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029274 GSM352203 SRA009988 SRX012331 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 10 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029275 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029275 GSM352203 SRA009988 SRX012331 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 11 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029238 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029238 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 12 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029239 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029239 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 13 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029240 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029240 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 14 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029241 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029241 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 15 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029242 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029242 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 16 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029243 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029243 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 17 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029244 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029244 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 18 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029245 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029245 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 19 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029246 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029246 GSM352204 SRA009988 SRX012313 OTHER SINGLE SRP001343 PRJNA112449 14025 20 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029276 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029276 GSM419463 SRA009988 SRX012332 ChIP-Seq SINGLE SRP001343 PRJNA112449 14025 21 Gert Jan Veenstra A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryog Gert Jan Veenstra, Robert Akkers, Simon van Heeringen, Ulrike Jacobi, Eva Janssen-Megens, Kees-Jan Françoijs, Hendrik Stunnenberg, Gert Veenstra ChIP-seq profiles of two histone modifications (H3K4me3 and H3K27me3) and RNA Polymerase II, and a RNA-seq profile, of gastrula stage Xenopus tropicalis embryos 19758566 40368 SRP001343 SRR029277 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000028/SRR029277 GSM419463 SRA009988 SRX012332 ChIP-Seq SINGLE SRP001343 PRJNA112449 14952 1 Mike Gilchrist High-throughput sequencing of small RNAs from Xenopus tropicalis High-throughput sequencing of small RNAs from Xenopus tropicalis (adult liver, adult skin, oocytes stage I, II, III, IV, V, VI).total RNA, ~18-42 nt Mike Gilchrist Illumina/Solexa sequencing of adult liver, adult skin, oocytes stage I, II, III, IV, V, VI 19628731 40115 SRP001036 SRR020456 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000019/SRR020456 GSM372598 SRA009325 SRX007332 OTHER SINGLE SRP001036 PRJNA111817 14952 2 Mike Gilchrist High-throughput sequencing of small RNAs from Xenopus tropicalis High-throughput sequencing of small RNAs from Xenopus tropicalis (adult liver, adult skin, oocytes stage I, II, III, IV, V, VI).total RNA, ~18-42 nt Mike Gilchrist Illumina/Solexa sequencing of adult liver, adult skin, oocytes stage I, II, III, IV, V, VI 19628731 40115 SRP001036 SRR020457 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000019/SRR020457 GSM372601 SRA009325 SRX007333 OTHER SINGLE SRP001036 PRJNA111817 14952 3 Mike Gilchrist High-throughput sequencing of small RNAs from Xenopus tropicalis High-throughput sequencing of small RNAs from Xenopus tropicalis (adult liver, adult skin, oocytes stage I, II, III, IV, V, VI).total RNA, ~18-42 nt Mike Gilchrist Illumina/Solexa sequencing of adult liver, adult skin, oocytes stage I, II, III, IV, V, VI 19628731 40115 SRP001036 SRR020458 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000019/SRR020458 GSM372602 SRA009325 SRX007334 OTHER SINGLE SRP001036 PRJNA111817 14952 4 Mike Gilchrist High-throughput sequencing of small RNAs from Xenopus tropicalis High-throughput sequencing of small RNAs from Xenopus tropicalis (adult liver, adult skin, oocytes stage I, II, III, IV, V, VI).total RNA, ~18-42 nt Mike Gilchrist Illumina/Solexa sequencing of adult liver, adult skin, oocytes stage I, II, III, IV, V, VI 19628731 40115 SRP001036 SRR020459 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000019/SRR020459 GSM372603 SRA009325 SRX007335 OTHER SINGLE SRP001036 PRJNA111817 14952 5 Mike Gilchrist High-throughput sequencing of small RNAs from Xenopus tropicalis High-throughput sequencing of small RNAs from Xenopus tropicalis (adult liver, adult skin, oocytes stage I, II, III, IV, V, VI).total RNA, ~18-42 nt Mike Gilchrist Illumina/Solexa sequencing of adult liver, adult skin, oocytes stage I, II, III, IV, V, VI 19628731 40115 SRP001036 SRR020460 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000019/SRR020460 GSM372604 SRA009325 SRX007336 OTHER SINGLE SRP001036 PRJNA111817 19173 1 Nicolas Robine Xenopus egg small RNA associated with Y12 antibody We examined in Xenopus tropicalis eggs piRNAs that are associated with Y12 antibody, which binds symmetrically methylated arginines that are present o Nicolas Robine, Nelson Lau, Eric Lai Sequencing of a cDNA library from small RNAs from the Y12 immunoprecipitate 20022248 40809 SRP001702 SRR033660 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/000032/SRR033660 GSM475282 SRA010774 SRX015664 RNA-Seq SINGLE SRP001702 PRJNA120587 21482 1 Gert Jan Veenstra Nucleotide composition-linked divergence of vertebrate core promoter architecture Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists, how Gert Jan Veenstra, Simon van Heeringen, Waseem Akhtar, Ulrike Jacobi, Robert Akkers, Yutaka Suzuki, Gert Veenstra ChIP-seq profiles of TBP in Xenopus tropicalis stage 12 embryos and TSS-seq profiles of Xenopus oocytes and stage 12 embryos 21284373 42761 SRP002372 SRR040482 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000039/SRR040482 GSM537039 SRA012595 SRX019583 ChIP-Seq SINGLE SRP002372 PRJNA126041 21482 2 Gert Jan Veenstra Nucleotide composition-linked divergence of vertebrate core promoter architecture Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists, how Gert Jan Veenstra, Simon van Heeringen, Waseem Akhtar, Ulrike Jacobi, Robert Akkers, Yutaka Suzuki, Gert Veenstra ChIP-seq profiles of TBP in Xenopus tropicalis stage 12 embryos and TSS-seq profiles of Xenopus oocytes and stage 12 embryos 21284373 42761 SRP002372 SRR040483 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000039/SRR040483 GSM537039 SRA012595 SRX019583 ChIP-Seq SINGLE SRP002372 PRJNA126041 21482 3 Gert Jan Veenstra Nucleotide composition-linked divergence of vertebrate core promoter architecture Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists, how Gert Jan Veenstra, Simon van Heeringen, Waseem Akhtar, Ulrike Jacobi, Robert Akkers, Yutaka Suzuki, Gert Veenstra ChIP-seq profiles of TBP in Xenopus tropicalis stage 12 embryos and TSS-seq profiles of Xenopus oocytes and stage 12 embryos 21284373 42761 SRP002372 SRR085448 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000083/SRR085448 GSM632116 SRA012595 SRX035149 RNA-Seq SINGLE SRP002372 PRJNA126041 21482 4 Gert Jan Veenstra Nucleotide composition-linked divergence of vertebrate core promoter architecture Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists, how Gert Jan Veenstra, Simon van Heeringen, Waseem Akhtar, Ulrike Jacobi, Robert Akkers, Yutaka Suzuki, Gert Veenstra ChIP-seq profiles of TBP in Xenopus tropicalis stage 12 embryos and TSS-seq profiles of Xenopus oocytes and stage 12 embryos 21284373 42761 SRP002372 SRR085449 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000083/SRR085449 GSM632116 SRA012595 SRX035149 RNA-Seq SINGLE SRP002372 PRJNA126041 21482 5 Gert Jan Veenstra Nucleotide composition-linked divergence of vertebrate core promoter architecture Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists, how Gert Jan Veenstra, Simon van Heeringen, Waseem Akhtar, Ulrike Jacobi, Robert Akkers, Yutaka Suzuki, Gert Veenstra ChIP-seq profiles of TBP in Xenopus tropicalis stage 12 embryos and TSS-seq profiles of Xenopus oocytes and stage 12 embryos 21284373 42761 SRP002372 SRR085450 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000083/SRR085450 GSM632117 SRA012595 SRX035150 RNA-Seq SINGLE SRP002372 PRJNA126041 21482 6 Gert Jan Veenstra Nucleotide composition-linked divergence of vertebrate core promoter architecture Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists, how Gert Jan Veenstra, Simon van Heeringen, Waseem Akhtar, Ulrike Jacobi, Robert Akkers, Yutaka Suzuki, Gert Veenstra ChIP-seq profiles of TBP in Xenopus tropicalis stage 12 embryos and TSS-seq profiles of Xenopus oocytes and stage 12 embryos 21284373 42761 SRP002372 SRR085451 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000083/SRR085451 GSM632117 SRA012595 SRX035150 RNA-Seq SINGLE SRP002372 PRJNA126041 22146 1 Kevin Lebrigand microRNAs signatures of Xenopus laevis embryo epidermis at stage 11 (non ciliated) and 26 (ciliated) using high throughput sequencing Epidermis of Xenopus embryos forms a mucociliary epithelium constituted of basal, scattered, secreting and ciliated cells and is histologically simila Kevin Lebrigand, B Marcet, P Barbry, K Lebrigand 2 technical replicates of a pool of 50 explants for each stage 11.5 (non ciliated) and 26 (ciliated) of Xenopus laevis development 21602795 43315 SRP002578 SRR057341 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000055/SRR057341 GSM550779 SRA020109 SRX021834 RNA-Seq SINGLE SRP002578 PRJNA129201 22146 2 Kevin Lebrigand microRNAs signatures of Xenopus laevis embryo epidermis at stage 11 (non ciliated) and 26 (ciliated) using high throughput sequencing Epidermis of Xenopus embryos forms a mucociliary epithelium constituted of basal, scattered, secreting and ciliated cells and is histologically simila Kevin Lebrigand, B Marcet, P Barbry, K Lebrigand 2 technical replicates of a pool of 50 explants for each stage 11.5 (non ciliated) and 26 (ciliated) of Xenopus laevis development 21602795 43315 SRP002578 SRR057342 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000055/SRR057342 GSM550780 SRA020109 SRX021835 RNA-Seq SINGLE SRP002578 PRJNA129201 22146 3 Kevin Lebrigand microRNAs signatures of Xenopus laevis embryo epidermis at stage 11 (non ciliated) and 26 (ciliated) using high throughput sequencing Epidermis of Xenopus embryos forms a mucociliary epithelium constituted of basal, scattered, secreting and ciliated cells and is histologically simila Kevin Lebrigand, B Marcet, P Barbry, K Lebrigand 2 technical replicates of a pool of 50 explants for each stage 11.5 (non ciliated) and 26 (ciliated) of Xenopus laevis development 21602795 43315 SRP002578 SRR057343 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000055/SRR057343 GSM550781 SRA020109 SRX021836 RNA-Seq SINGLE SRP002578 PRJNA129201 22146 4 Kevin Lebrigand microRNAs signatures of Xenopus laevis embryo epidermis at stage 11 (non ciliated) and 26 (ciliated) using high throughput sequencing Epidermis of Xenopus embryos forms a mucociliary epithelium constituted of basal, scattered, secreting and ciliated cells and is histologically simila Kevin Lebrigand, B Marcet, P Barbry, K Lebrigand 2 technical replicates of a pool of 50 explants for each stage 11.5 (non ciliated) and 26 (ciliated) of Xenopus laevis development 21602795 43315 SRP002578 SRR057344 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000056/SRR057344 GSM550782 SRA020109 SRX021837 RNA-Seq SINGLE SRP002578 PRJNA129201 23913 1 Ozren Bogdanovic Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation sequencing of purified methylated D Ozren Bogdanovic, Simon van Heeringen, Steven Long, Arjen Brinkman, Hendrik Stunnenberg, Peter Jones, Gert-Jan Veenstra MethylCap (methylated DNA affinity capture with the MBD domain of MeCP2), 500mM and 700mM elution fractions of stage 9 (blastula) and stage 12.5 (gastrula) Xenopus tropicalis DNA 21636662 43338 SRP003559 SRR065795 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000064/SRR065795 GSM589696 SRA023915 SRX026883 OTHER SINGLE SRP003559 PRJNA130531 23913 2 Ozren Bogdanovic Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation sequencing of purified methylated D Ozren Bogdanovic, Simon van Heeringen, Steven Long, Arjen Brinkman, Hendrik Stunnenberg, Peter Jones, Gert-Jan Veenstra MethylCap (methylated DNA affinity capture with the MBD domain of MeCP2), 500mM and 700mM elution fractions of stage 9 (blastula) and stage 12.5 (gastrula) Xenopus tropicalis DNA 21636662 43338 SRP003559 SRR065796 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000064/SRR065796 GSM589697 SRA023915 SRX026884 OTHER SINGLE SRP003559 PRJNA130531 23913 3 Ozren Bogdanovic Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation sequencing of purified methylated D Ozren Bogdanovic, Simon van Heeringen, Steven Long, Arjen Brinkman, Hendrik Stunnenberg, Peter Jones, Gert-Jan Veenstra MethylCap (methylated DNA affinity capture with the MBD domain of MeCP2), 500mM and 700mM elution fractions of stage 9 (blastula) and stage 12.5 (gastrula) Xenopus tropicalis DNA 21636662 43338 SRP003559 SRR065797 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000064/SRR065797 GSM589698 SRA023915 SRX026885 OTHER SINGLE SRP003559 PRJNA130531 23913 4 Ozren Bogdanovic Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation sequencing of purified methylated D Ozren Bogdanovic, Simon van Heeringen, Steven Long, Arjen Brinkman, Hendrik Stunnenberg, Peter Jones, Gert-Jan Veenstra MethylCap (methylated DNA affinity capture with the MBD domain of MeCP2), 500mM and 700mM elution fractions of stage 9 (blastula) and stage 12.5 (gastrula) Xenopus tropicalis DNA 21636662 43338 SRP003559 SRR065798 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000064/SRR065798 GSM589699 SRA023915 SRX026886 OTHER SINGLE SRP003559 PRJNA130531 30067 1 Juan Larrain Deep sequencing of small RNAs in the Xenopus tropicalis gastrula Transposable elements comprise a large proportion of animal genomes. Transcripts of transposable elements are a source for the synthesis of endogenous Juan Larrain, Fernando Faunes, Natalia Sanchez, Mauricio Moreno, Gonzalo Olivares, Dasfne Lee-Liu, Leonardo Almonacid, Alex Slater, Tomas Norambuena, Ryan Taft, John Mattick, Francisco Melo Analysis of small RNAs expressed in the Xenopus tropicalis gastrula. 21818339 43632 SRP007217 SRR285186 https://sra-download.ncbi.nlm.nih.gov/traces/sra2/SRR/000278/SRR285186 GSM744253 SRA038449 SRX077929 RNA-Seq SINGLE SRP007217 PRJNA144001 30067 2 Juan Larrain Deep sequencing of small RNAs in the Xenopus tropicalis gastrula Transposable elements comprise a large proportion of animal genomes. Transcripts of transposable elements are a source for the synthesis of endogenous Juan Larrain, Fernando Faunes, Natalia Sanchez, Mauricio Moreno, Gonzalo Olivares, Dasfne Lee-Liu, Leonardo Almonacid, Alex Slater, Tomas Norambuena, Ryan Taft, John Mattick, Francisco Melo Analysis of small RNAs expressed in the Xenopus tropicalis gastrula. 21818339 43632 SRP007217 SRR285187 https://sra-download.ncbi.nlm.nih.gov/traces/sra2/SRR/000278/SRR285187 GSM744254 SRA038449 SRX077930 RNA-Seq SINGLE SRP007217 PRJNA144001 30146 1 Se-Jin Yoon HEB and E2A function as SMAD/FOXH1 cofactors Nodal signaling, mediated through SMAD transcription factors, is necessary for pluripotency maintenance and endoderm commitment. We have identified a Se-Jin Yoon, Andrea Wills, Edward Chuong, Rakhi Gupta, Julie Baker ChIP-seq of Smad2/3 and Input in X.tropicalis, stage 10.5 embryo. 21828274 43683 SRP007355 SRR299084 https://sra-download.ncbi.nlm.nih.gov/traces/sra2/SRR/000292/SRR299084 GSM746611 SRA039282 SRX080197 ChIP-Seq SINGLE SRP007355 PRJNA143851 30146 2 Se-Jin Yoon HEB and E2A function as SMAD/FOXH1 cofactors Nodal signaling, mediated through SMAD transcription factors, is necessary for pluripotency maintenance and endoderm commitment. We have identified a Se-Jin Yoon, Andrea Wills, Edward Chuong, Rakhi Gupta, Julie Baker ChIP-seq of Smad2/3 and Input in X.tropicalis, stage 10.5 embryo. 21828274 43683 SRP007355 SRR299085 https://sra-download.ncbi.nlm.nih.gov/traces/sra2/SRR/000292/SRR299085 GSM746612 SRA039282 SRX080198 ChIP-Seq SINGLE SRP007355 PRJNA143851 33444 1 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360852 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360852 GSM827025 SRA047840 SRX104181 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 2 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360853 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360853 GSM827026 SRA047840 SRX104182 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 3 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360854 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360854 GSM827027 SRA047840 SRX104183 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 4 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360855 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360855 GSM827028 SRA047840 SRX104184 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 5 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360856 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360856 GSM827029 SRA047840 SRX104185 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 6 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360857 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360857 GSM827030 SRA047840 SRX104186 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 7 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360858 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360858 GSM827031 SRA047840 SRX104187 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 8 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360859 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360859 GSM827032 SRA047840 SRX104188 RNA-Seq SINGLE SRP009183 PRJNA148701 33444 9 Cei Abreu-Goodger miR-124 acts through coREST to control the onset of Sema3A sensitivity in navigating retinal growth cones During axon pathfinding, growth cones commonly exhibit changes in sensitivity to guidance cues that follow a strict timetable, even in the absence of Cei Abreu-Goodger, Marie-Laure Baudet, Krishna Zivraj, Alistair Muldal, Javier Armisen, Cherie Blenkiron, Leonard Goldstein, Erik Miska, Christine Holt Two independent experiments were performed. One with a single sample for each of 3 stages, and the second with 2 biological replicates of each stage. 22138647 44540 SRP009183 SRR360860 https://sra-download.ncbi.nlm.nih.gov/traces/sra7/SRR/000352/SRR360860 GSM827033 SRA047840 SRX104189 RNA-Seq SINGLE SRP009183 PRJNA148701 37452 1 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489439 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489439 GSM919922 SRA051954 SRX143516 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 2 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489440 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489440 GSM919923 SRA051954 SRX143517 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 3 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489441 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489441 GSM919924 SRA051954 SRX143518 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 4 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489442 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489442 GSM919925 SRA051954 SRX143519 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 5 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489443 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489443 GSM919926 SRA051954 SRX143520 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 6 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489444 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489444 GSM919927 SRA051954 SRX143521 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 7 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489445 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489445 GSM919928 SRA051954 SRX143522 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 8 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489446 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489446 GSM919929 SRA051954 SRX143523 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 9 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489447 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489447 GSM919930 SRA051954 SRX143524 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 10 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489448 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489448 GSM919931 SRA051954 SRX143525 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 11 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489449 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489449 GSM919932 SRA051954 SRX143526 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 12 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489450 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489450 GSM919933 SRA051954 SRX143527 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 13 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489451 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489451 GSM919934 SRA051954 SRX143528 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 14 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489452 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489452 GSM919935 SRA051954 SRX143529 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 15 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489453 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489453 GSM919936 SRA051954 SRX143530 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 16 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489454 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489454 GSM919937 SRA051954 SRX143531 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 17 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489455 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489455 GSM919938 SRA051954 SRX143532 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 18 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489456 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489456 GSM919939 SRA051954 SRX143533 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 19 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489457 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489457 GSM919940 SRA051954 SRX143534 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 20 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489458 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489458 GSM919941 SRA051954 SRX143535 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 21 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489459 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489459 GSM919942 SRA051954 SRX143536 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 22 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489460 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489460 GSM919943 SRA051954 SRX143537 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 23 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489461 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489461 GSM919944 SRA051954 SRX143538 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 24 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489462 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489462 GSM919945 SRA051954 SRX143539 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 25 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489463 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489463 GSM919946 SRA051954 SRX143540 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 26 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489464 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489464 GSM919947 SRA051954 SRX143541 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 27 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489465 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489465 GSM919948 SRA051954 SRX143542 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 28 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489466 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489466 GSM919949 SRA051954 SRX143543 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 29 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489467 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489467 GSM919950 SRA051954 SRX143544 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 30 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489468 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489468 GSM919951 SRA051954 SRX143545 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 31 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489469 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489469 GSM919952 SRA051954 SRX143546 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 32 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489470 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489470 GSM919953 SRA051954 SRX143547 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 33 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489471 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000477/SRR489471 GSM919954 SRA051954 SRX143548 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 34 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489472 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489472 GSM919955 SRA051954 SRX143549 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 35 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489473 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489473 GSM919956 SRA051954 SRX143550 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 36 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489474 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489474 GSM919957 SRA051954 SRX143551 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 37 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489475 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489475 GSM919958 SRA051954 SRX143552 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 38 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489476 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489476 GSM919959 SRA051954 SRX143553 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 39 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489477 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489477 GSM919960 SRA051954 SRX143554 RNA-Seq PAIRED SRP012375 PRJNA160141 37452 40 Kin Fai Au RNA sequencing reveals diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. We report the application of paired-end RNA sequencing for high throughput profiling of the Xenopus transcriptome in 23 distinct developmental stages. Kin Fai Au, Meng Tan, Kin Au, Arielle Yablonovitch, Andrea Wills, Julie Baker, Wing Wong, Jin Li Examination of the transcriptome of Xenopus tropicalis from a 2-cell fertilized embryo to a stage 45 feeding tapole 22960373 45933 SRP012375 SRR489478 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000478/SRR489478 GSM919961 SRA051954 SRX143555 RNA-Seq PAIRED SRP012375 PRJNA160141 38605 1 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505561 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505561 GSM945997 SRA053593 SRX152563 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 2 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505562 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505562 GSM945998 SRA053593 SRX152564 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 3 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505563 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505563 GSM945999 SRA053593 SRX152565 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 4 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505564 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505564 GSM946000 SRA053593 SRX152566 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 5 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505565 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505565 GSM946001 SRA053593 SRX152567 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 6 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505566 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505566 GSM946002 SRA053593 SRX152568 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 7 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505567 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505567 GSM946003 SRA053593 SRX152569 RNA-Seq SINGLE SRP013627 PRJNA168208 38605 8 Caroline Hill Genome-wide small RNA profiling and mRNA profiling of Xenopus embryos Here we report on genome-wide small RNA and transcriptome profiling of blastula, gastrula and neurula-stage Xenopus tropicalis embryos using deep sequ Caroline Hill, Joanne Harding, Stuart Horswell, Javier Armisen, Lyle Zimmerman, Eric Miska, Caroline Hill Examination of small RNAs and mRNA at 3 stages of Xenopus embryonic development. 24065776 47876 SRP013627 SRR505568 https://sra-download.ncbi.nlm.nih.gov/traces/sra5/SRR/000493/SRR505568 GSM946004 SRA053593 SRX152570 RNA-Seq SINGLE SRP013627 PRJNA168208 41161 1 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576762 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576762 GSM1009589 SRA059058 SRX189700 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 2 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576763 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576763 GSM1009590 SRA059058 SRX189701 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 3 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576764 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576764 GSM1009591 SRA059058 SRX189702 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 4 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576765 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576765 GSM1009592 SRA059058 SRX189703 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 5 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576766 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576766 GSM1009593 SRA059058 SRX189704 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 6 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576767 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576767 GSM1009594 SRA059058 SRX189705 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 7 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576768 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576768 GSM1009595 SRA059058 SRX189706 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 8 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576769 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576769 GSM1009596 SRA059058 SRX189707 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 9 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576770 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576770 GSM1009597 SRA059058 SRX189708 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 10 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576771 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576771 GSM1009598 SRA059058 SRX189709 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 11 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576772 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576772 GSM1009599 SRA059058 SRX189710 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 12 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576773 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576773 GSM1009600 SRA059058 SRX189711 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 13 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576774 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576774 GSM1009601 SRA059058 SRX189712 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 14 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576775 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576775 GSM1009602 SRA059058 SRX189713 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 15 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576776 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/000563/SRR576776 GSM1009603 SRA059058 SRX189714 ChIP-Seq SINGLE SRP015902 PRJNA175996 41161 16 Gert Jan Veenstra Principles of nucleation of H3K27 methylation during embryonic development During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 Gert Jan Veenstra, Simon van Heeringen, Robert Akkers, Ila van Kruijsbergen, Lars Hanssen, Nilofar Sharifi, Gert-Jan Veenstra, M. Asif Arif ChIP-seq profiles of three histone modifications (H3K4me3, H3K27me3 and H3K4me1) and RNA Polymerase II, EZH2 and Jarid2 of Xenopus tropicalis embryos during development 24336765 47807 SRP015902 SRR576777 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000563/SRR576777 GSM1009604 SRA059058 SRX189715 ChIP-Seq SINGLE SRP015902 PRJNA175996 41338 1 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579545 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579545 GSM1015150 SRA059267 SRX191149 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 2 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579546 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579546 GSM1015151 SRA059267 SRX191150 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 3 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579547 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579547 GSM1015152 SRA059267 SRX191151 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 4 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579548 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579548 GSM1015153 SRA059267 SRX191152 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 5 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579549 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579549 GSM1015154 SRA059267 SRX191153 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 6 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579550 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579550 GSM1015155 SRA059267 SRX191154 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 7 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579551 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579551 GSM1015156 SRA059267 SRX191155 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 8 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579552 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579552 GSM1015157 SRA059267 SRX191156 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 9 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579553 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579553 GSM1015158 SRA059267 SRX191157 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 10 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579554 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579554 GSM1015159 SRA059267 SRX191158 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 11 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579555 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579555 GSM1015160 SRA059267 SRX191159 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 12 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579556 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579556 GSM1015161 SRA059267 SRX191160 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 13 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579557 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579557 GSM1015162 SRA059267 SRX191161 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 14 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579558 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579558 GSM1015163 SRA059267 SRX191162 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 15 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579559 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579559 GSM1015164 SRA059267 SRX191163 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 16 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579560 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579560 GSM1015165 SRA059267 SRX191164 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 17 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579561 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579561 GSM1015166 SRA059267 SRX191165 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 18 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579562 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579562 GSM1015167 SRA059267 SRX191166 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 19 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579563 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579563 GSM1015168 SRA059267 SRX191167 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 20 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579564 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579564 GSM1015169 SRA059267 SRX191168 RNA-Seq PAIRED SRP015997 PRJNA176589 41338 21 Nuno Barbosa-Morais The evolutionary landscape of alternative splicing in vertebrate species How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the t Nuno Barbosa-Morais, Claudia Kutter, Stephen Watt, Duncan Odom, Benjamin Blencowe mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq 23258890 46474 SRP015997 SRR579565 https://sra-download.ncbi.nlm.nih.gov/traces/sra1/SRR/000565/SRR579565 GSM1015170 SRA059267 SRX191169 RNA-Seq PAIRED SRP015997 PRJNA176589 43512 1 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648795 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648795 GSM1064674 SRA064777 SRX217137 OTHER SINGLE SRP017952 PRJNA186672 43512 2 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648796 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648796 GSM1064675 SRA064777 SRX217138 OTHER SINGLE SRP017952 PRJNA186672 43512 3 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648797 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648797 GSM1064675 SRA064777 SRX217138 OTHER SINGLE SRP017952 PRJNA186672 43512 4 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648798 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648798 GSM1064676 SRA064777 SRX217139 OTHER SINGLE SRP017952 PRJNA186672 43512 5 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648799 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648799 GSM1064676 SRA064777 SRX217139 OTHER SINGLE SRP017952 PRJNA186672 43512 6 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648800 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648800 GSM1064677 SRA064777 SRX217140 OTHER SINGLE SRP017952 PRJNA186672 43512 7 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648801 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648801 GSM1064678 SRA064777 SRX217141 OTHER SINGLE SRP017952 PRJNA186672 43512 8 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648802 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648802 GSM1064678 SRA064777 SRX217141 OTHER SINGLE SRP017952 PRJNA186672 43512 9 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648803 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648803 GSM1064679 SRA064777 SRX217142 OTHER SINGLE SRP017952 PRJNA186672 43512 10 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648804 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648804 GSM1064679 SRA064777 SRX217142 OTHER SINGLE SRP017952 PRJNA186672 43512 11 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648805 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648805 GSM1064680 SRA064777 SRX217143 OTHER SINGLE SRP017952 PRJNA186672 43512 12 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648806 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648806 GSM1064680 SRA064777 SRX217143 OTHER SINGLE SRP017952 PRJNA186672 43512 13 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648807 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648807 GSM1064681 SRA064777 SRX217144 OTHER SINGLE SRP017952 PRJNA186672 43512 14 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648808 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648808 GSM1064682 SRA064777 SRX217145 OTHER SINGLE SRP017952 PRJNA186672 43512 15 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648809 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648809 GSM1064682 SRA064777 SRX217145 OTHER SINGLE SRP017952 PRJNA186672 43512 16 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648810 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648810 GSM1064683 SRA064777 SRX217146 OTHER SINGLE SRP017952 PRJNA186672 43512 17 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648811 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648811 GSM1064683 SRA064777 SRX217146 OTHER SINGLE SRP017952 PRJNA186672 43512 18 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648812 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648812 GSM1064684 SRA064777 SRX217147 OTHER SINGLE SRP017952 PRJNA186672 43512 19 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648813 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648813 GSM1064685 SRA064777 SRX217148 OTHER SINGLE SRP017952 PRJNA186672 43512 20 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648814 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648814 GSM1064685 SRA064777 SRX217148 OTHER SINGLE SRP017952 PRJNA186672 43512 21 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648815 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648815 GSM1064686 SRA064777 SRX217149 OTHER SINGLE SRP017952 PRJNA186672 43512 22 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648816 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648816 GSM1064686 SRA064777 SRX217149 OTHER SINGLE SRP017952 PRJNA186672 43512 23 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648817 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648817 GSM1064687 SRA064777 SRX217150 OTHER SINGLE SRP017952 PRJNA186672 43512 24 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648818 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648818 GSM1064688 SRA064777 SRX217151 OTHER SINGLE SRP017952 PRJNA186672 43512 25 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648819 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648819 GSM1064688 SRA064777 SRX217151 OTHER SINGLE SRP017952 PRJNA186672 43512 26 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648820 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648820 GSM1064689 SRA064777 SRX217152 OTHER SINGLE SRP017952 PRJNA186672 43512 27 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648821 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648821 GSM1064689 SRA064777 SRX217152 OTHER SINGLE SRP017952 PRJNA186672 43512 28 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648822 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648822 GSM1064690 SRA064777 SRX217153 OTHER SINGLE SRP017952 PRJNA186672 43512 29 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648823 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648823 GSM1064691 SRA064777 SRX217154 OTHER SINGLE SRP017952 PRJNA186672 43512 30 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648824 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648824 GSM1064691 SRA064777 SRX217154 OTHER SINGLE SRP017952 PRJNA186672 43512 31 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648825 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648825 GSM1064692 SRA064777 SRX217155 OTHER SINGLE SRP017952 PRJNA186672 43512 32 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648826 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648826 GSM1064692 SRA064777 SRX217155 OTHER SINGLE SRP017952 PRJNA186672 43512 33 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648827 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648827 GSM1064693 SRA064777 SRX217156 OTHER SINGLE SRP017952 PRJNA186672 43512 34 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648828 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648828 GSM1064693 SRA064777 SRX217156 OTHER SINGLE SRP017952 PRJNA186672 43512 35 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648829 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648829 GSM1064694 SRA064777 SRX217157 OTHER SINGLE SRP017952 PRJNA186672 43512 36 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648830 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648830 GSM1064695 SRA064777 SRX217158 OTHER SINGLE SRP017952 PRJNA186672 43512 37 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648831 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648831 GSM1064695 SRA064777 SRX217158 OTHER SINGLE SRP017952 PRJNA186672 43512 38 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648832 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648832 GSM1064696 SRA064777 SRX217159 OTHER SINGLE SRP017952 PRJNA186672 43512 39 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648833 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648833 GSM1064696 SRA064777 SRX217159 OTHER SINGLE SRP017952 PRJNA186672 43512 40 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648834 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648834 GSM1064697 SRA064777 SRX217160 OTHER SINGLE SRP017952 PRJNA186672 43512 41 David Sims Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive David Sims, Hannah Long, Chris Ponting, Robert Klose Bio-CAP was used to identify non-methylated regions of the genome in seven diverse vertebrates (human, mouse, platypus, chicken, lizard, frog and zebrafish) across a number of tissues. 23467541 46753 SRP017952 SRR648835 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000633/SRR648835 GSM1064697 SRA064777 SRX217160 OTHER SINGLE SRP017952 PRJNA186672 43520 1 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649360 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649360 GSM1064822 SRA064905 SRX217680 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 2 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649361 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649361 GSM1064824 SRA064905 SRX217681 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 3 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649362 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649362 GSM1064826 SRA064905 SRX217682 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 4 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649363 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649363 GSM1064828 SRA064905 SRX217683 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 5 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649364 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649364 GSM1064829 SRA064905 SRX217684 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 6 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649365 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649365 GSM1064832 SRA064905 SRX217685 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 7 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649366 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649366 GSM1064834 SRA064905 SRX217686 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 8 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649367 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649367 GSM1064834 SRA064905 SRX217686 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 9 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649368 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649368 GSM1064837 SRA064905 SRX217687 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 10 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649369 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649369 GSM1064840 SRA064905 SRX217688 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 11 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649370 https://sra-download.ncbi.nlm.nih.gov/traces/sra3/SRR/000634/SRR649370 GSM1064840 SRA064905 SRX217688 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 12 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649371 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649371 GSM1064841 SRA064905 SRX217689 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 13 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649372 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649372 GSM1064842 SRA064905 SRX217690 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 14 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649373 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649373 GSM1064843 SRA064905 SRX217691 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 15 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649374 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649374 GSM1064844 SRA064905 SRX217692 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 16 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649375 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649375 GSM1064845 SRA064905 SRX217693 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 17 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649376 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649376 GSM1064846 SRA064905 SRX217694 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 18 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649377 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649377 GSM1064847 SRA064905 SRX217695 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 19 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649378 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649378 GSM1064848 SRA064905 SRX217696 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 20 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649379 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649379 GSM1064849 SRA064905 SRX217697 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 21 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649380 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649380 GSM1064849 SRA064905 SRX217697 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 22 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649381 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649381 GSM1064850 SRA064905 SRX217698 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 23 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649382 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649382 GSM1064851 SRA064905 SRX217699 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 24 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649383 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649383 GSM1064852 SRA064905 SRX217700 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 25 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649384 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649384 GSM1064852 SRA064905 SRX217700 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 26 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649385 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649385 GSM1064853 SRA064905 SRX217701 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 27 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649386 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649386 GSM1064854 SRA064905 SRX217702 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 28 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649387 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649387 GSM1064854 SRA064905 SRX217702 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 29 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649388 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649388 GSM1064854 SRA064905 SRX217702 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 30 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649389 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649389 GSM1064855 SRA064905 SRX217703 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 31 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649390 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649390 GSM1064855 SRA064905 SRX217703 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 32 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649391 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649391 GSM1064856 SRA064905 SRX217704 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 33 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649392 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649392 GSM1064857 SRA064905 SRX217705 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 34 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649393 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649393 GSM1064858 SRA064905 SRX217706 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 35 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649394 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649394 GSM1064859 SRA064905 SRX217707 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 36 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649395 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649395 GSM1064860 SRA064905 SRX217708 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 37 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649396 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649396 GSM1064861 SRA064905 SRX217709 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 38 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649397 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649397 GSM1064862 SRA064905 SRX217710 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 39 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649398 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649398 GSM1064863 SRA064905 SRX217711 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 40 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649399 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649399 GSM1064864 SRA064905 SRX217712 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 41 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR649400 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000634/SRR649400 GSM1064865 SRA064905 SRX217713 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 42 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943339 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943339 GSM1196040 SRA064905 SRX328074 RNA-Seq PAIRED SRP017959 PRJNA186646 43520 43 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943357 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943357 GSM1196041 SRA064905 SRX328092 RNA-Seq PAIRED SRP017959 PRJNA186646 43520 44 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943358 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943358 GSM1196042 SRA064905 SRX328093 RNA-Seq PAIRED SRP017959 PRJNA186646 43520 45 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943359 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943359 GSM1196043 SRA064905 SRX328094 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 46 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943340 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943340 GSM1196044 SRA064905 SRX328075 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 47 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943341 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943341 GSM1196045 SRA064905 SRX328076 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 48 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943342 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943342 GSM1196046 SRA064905 SRX328077 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 49 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943343 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943343 GSM1196047 SRA064905 SRX328078 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 50 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943344 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943344 GSM1196048 SRA064905 SRX328079 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 51 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943345 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943345 GSM1196049 SRA064905 SRX328080 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 52 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943346 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943346 GSM1196050 SRA064905 SRX328081 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 53 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943347 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943347 GSM1196051 SRA064905 SRX328082 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 54 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943348 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943348 GSM1196052 SRA064905 SRX328083 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 55 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943349 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943349 GSM1196053 SRA064905 SRX328084 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 56 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943350 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943350 GSM1196054 SRA064905 SRX328085 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 57 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943351 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943351 GSM1196055 SRA064905 SRX328086 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 58 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943352 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943352 GSM1196056 SRA064905 SRX328087 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 59 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943353 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943353 GSM1196057 SRA064905 SRX328088 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 60 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943354 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943354 GSM1196058 SRA064905 SRX328089 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 61 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943355 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943355 GSM1196059 SRA064905 SRX328090 RNA-Seq SINGLE SRP017959 PRJNA186646 43520 62 Anamaria Necsulea The evolution of lncRNA repertoires and expression patterns in tetrapods Only a minuscule fraction of long non-coding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into thei Anamaria Necsulea, Magali Soumillon, Angélica Liechti, Tasman Daish, Ulrich Zeller, Julie Baker, Frank Grutzner, Henrik Kaessmann, Maria Warnefors [Batch 1 and 2] To broaden our understanding of lncRNA evolution, we used an extensive RNA-seq dataset to establish lncRNA repertoires and homologous gene families in 11 tetrapod species. We analyzed the poly- adenylated transcriptomes of 8 organs (cortex/whole brain without cerebellum, cerebellum, heart, kidney, liver, placenta, ovary and testis) and 11 species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and the frog Xenopus tropicalis), which shared a common ancestor ~370 millions of years (MY) ago. Our dataset included 47 strand-specific samples, which allowed us to confirm the orientation of gene predictions and to address the evolution of sense-antisense transcripts. See also GSE43721 (Soumillon et al, Cell Reports, 2013) for three strand-specific samples for mouse brain, liver and testis. 24463510 54076 SRP017959 SRR943356 https://sra-download.ncbi.nlm.nih.gov/traces/sra13/SRR/000921/SRR943356 GSM1196060 SRA064905 SRX328091 RNA-Seq SINGLE SRP017959 PRJNA186646 43652 1 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651117 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651117 GSM1067623 SRA065319 SRX218733 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 2 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651118 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651118 GSM1067623 SRA065319 SRX218733 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 3 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651119 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651119 GSM1067624 SRA065319 SRX218734 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 4 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651120 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651120 GSM1067624 SRA065319 SRX218734 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 5 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651121 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651121 GSM1067625 SRA065319 SRX218735 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 6 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651122 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651122 GSM1067626 SRA065319 SRX218736 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 7 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651123 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651123 GSM1067626 SRA065319 SRX218736 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 8 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651124 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651124 GSM1067627 SRA065319 SRX218737 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 9 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651125 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651125 GSM1067628 SRA065319 SRX218738 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 10 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651126 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651126 GSM1067629 SRA065319 SRX218739 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 11 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651127 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651127 GSM1067630 SRA065319 SRX218740 RNA-Seq SINGLE SRP018091 PRJNA186932 43652 12 Gert Jan Veenstra A Genome-Wide Survey of Maternal and Embryonic Transcripts during Xenopus tropicalis Development To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted tot Gert Jan Veenstra, Sarita Paranjpe, Ulrike Jacobi, Simon van Heeringen, Gert Veenstra Profiles of polyadenylated mRNA (6 stages) and ribosomal RNA-depleted total RNA (3 stages) through early Xenopus tropicalis development 24195446 47572 SRP018091 SRR651128 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/000635/SRR651128 GSM1067631 SRA065319 SRX218741 RNA-Seq SINGLE SRP018091 PRJNA186932 45786 1 Panna Tandon Cardiac transcriptome of Tcf21-depleted Xenopus embryos The aim of the approach was to use RNAseq analysis to identify genes expressed in Xenopus epicardium that were affected by embryonic depletion of the Panna Tandon, Frank Conlon, Nirav Amin mRNA profiles of stage 44-45 Xenopus laevis sibling hearts from control or Tcf21-depleted embryos, were generated by deep sequencing using Illumina GAII. 23637334 47035 SRP020536 SRR808992 https://sra-download.ncbi.nlm.nih.gov/traces/sra35/SRR/000790/SRR808992 GSM1115088 SRA072600 SRX260070 RNA-Seq SINGLE SRP020536 PRJNA196315 45786 2 Panna Tandon Cardiac transcriptome of Tcf21-depleted Xenopus embryos The aim of the approach was to use RNAseq analysis to identify genes expressed in Xenopus epicardium that were affected by embryonic depletion of the Panna Tandon, Frank Conlon, Nirav Amin mRNA profiles of stage 44-45 Xenopus laevis sibling hearts from control or Tcf21-depleted embryos, were generated by deep sequencing using Illumina GAII. 23637334 47035 SRP020536 SRR808993 https://sra-download.ncbi.nlm.nih.gov/traces/sra35/SRR/000790/SRR808993 GSM1115089 SRA072600 SRX260071 RNA-Seq SINGLE SRP020536 PRJNA196315 48560 1 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926401 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926401 GSM1180932 SRA092176 SRX318201 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 2 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926402 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926402 GSM1180933 SRA092176 SRX318202 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 3 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926403 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926403 GSM1180934 SRA092176 SRX318203 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 4 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926404 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926404 GSM1180935 SRA092176 SRX318204 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 5 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926405 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926405 GSM1180936 SRA092176 SRX318205 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 6 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926406 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926406 GSM1180937 SRA092176 SRX318206 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 7 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926407 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926407 GSM1180938 SRA092176 SRX318207 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 8 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926408 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926408 GSM1180939 SRA092176 SRX318208 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 9 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926409 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926409 GSM1180940 SRA092176 SRX318209 ChIP-Seq SINGLE SRP026570 PRJNA210646 48560 10 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency. We defined genome-wide regulatory inputs of the T-box transcription factors Brachyury (Xbra), Eomesodermin (Eomes) and VegT that maintain neuro-mesode George Gentsch, George Gentsch, James Smith Binding profiles for Xbra, Eomes and VegT in X. tropicalis embryos (ChIP-Seq) 24055059 47416 SRP026570 SRR926410 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/000904/SRR926410 GSM1180941 SRA092176 SRX318210 ChIP-Seq SINGLE SRP026570 PRJNA210646 48663 1 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929119 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929119 GSM1183056 SRA092415 SRX319533 RNA-Seq PAIRED SRP026685 PRJNA210967 48663 2 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929120 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929120 GSM1183057 SRA092415 SRX319534 RNA-Seq PAIRED SRP026685 PRJNA210967 48663 3 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929121 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929121 GSM1183058 SRA092415 SRX319535 RNA-Seq PAIRED SRP026685 PRJNA210967 48663 4 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929122 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929122 GSM1183059 SRA092415 SRX319536 RNA-Seq PAIRED SRP026685 PRJNA210967 48663 5 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929123 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929123 GSM1183060 SRA092415 SRX319537 RNA-Seq PAIRED SRP026685 PRJNA210967 48663 6 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929124 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929124 GSM1183061 SRA092415 SRX319538 RNA-Seq PAIRED SRP026685 PRJNA210967 48663 7 George Gentsch In vivo T-box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuro-mesodermal Bipotency Brachyury (Xbra/Xbra3) knock-down embryos of the frog Xenopus tropicalis were profiled to quantify neuro-mesodermal cell fate switches at a transcript George Gentsch, George Gentsch, James Smith Transcriptional profiling of Xbra/Xbra3 double morphants at early tadpole stage (RNA-Seq) in biological triplicates. 24055059 47416 SRP026685 SRR929125 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/000907/SRR929125 GSM1183062 SRA092415 SRX319539 RNA-Seq PAIRED SRP026685 PRJNA210967 50593 1 Taejoon Kwon Coordinated genomic control of ciliogenesis and cell movement by Rfx2 We have performed a systems-level analysis of the RFX/Daf-19 family transcription factor, Rfx2. Using a combination of high-throughput sequencing of R Taejoon Kwon, Mei-I Chung, Rakhi Gupta, Julie Baker, Edward Marcotte, John Wallingford RNA-seq: two biological replicates for control and RFX2 knockdown by morpholino injection, ChIP-seq: RFX2-GFP pulldown with GFP antibody, GFP only expression used as control 24424412 51735 SRP029582 SRR1276213 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001246/SRR1276213 GSM1224372 SRA100059 SRX345032 RNA-Seq PAIRED SRP029582 PRJNA218018 50593 2 Taejoon Kwon Coordinated genomic control of ciliogenesis and cell movement by Rfx2 We have performed a systems-level analysis of the RFX/Daf-19 family transcription factor, Rfx2. Using a combination of high-throughput sequencing of R Taejoon Kwon, Mei-I Chung, Rakhi Gupta, Julie Baker, Edward Marcotte, John Wallingford RNA-seq: two biological replicates for control and RFX2 knockdown by morpholino injection, ChIP-seq: RFX2-GFP pulldown with GFP antibody, GFP only expression used as control 24424412 51735 SRP029582 SRR1276214 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001246/SRR1276214 GSM1224373 SRA100059 SRX345033 RNA-Seq PAIRED SRP029582 PRJNA218018 50593 3 Taejoon Kwon Coordinated genomic control of ciliogenesis and cell movement by Rfx2 We have performed a systems-level analysis of the RFX/Daf-19 family transcription factor, Rfx2. Using a combination of high-throughput sequencing of R Taejoon Kwon, Mei-I Chung, Rakhi Gupta, Julie Baker, Edward Marcotte, John Wallingford RNA-seq: two biological replicates for control and RFX2 knockdown by morpholino injection, ChIP-seq: RFX2-GFP pulldown with GFP antibody, GFP only expression used as control 24424412 51735 SRP029582 SRR1276215 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001246/SRR1276215 GSM1224374 SRA100059 SRX345034 RNA-Seq PAIRED SRP029582 PRJNA218018 50593 4 Taejoon Kwon Coordinated genomic control of ciliogenesis and cell movement by Rfx2 We have performed a systems-level analysis of the RFX/Daf-19 family transcription factor, Rfx2. Using a combination of high-throughput sequencing of R Taejoon Kwon, Mei-I Chung, Rakhi Gupta, Julie Baker, Edward Marcotte, John Wallingford RNA-seq: two biological replicates for control and RFX2 knockdown by morpholino injection, ChIP-seq: RFX2-GFP pulldown with GFP antibody, GFP only expression used as control 24424412 51735 SRP029582 SRR1276216 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001246/SRR1276216 GSM1224375 SRA100059 SRX345035 RNA-Seq PAIRED SRP029582 PRJNA218018 50593 5 Taejoon Kwon Coordinated genomic control of ciliogenesis and cell movement by Rfx2 We have performed a systems-level analysis of the RFX/Daf-19 family transcription factor, Rfx2. Using a combination of high-throughput sequencing of R Taejoon Kwon, Mei-I Chung, Rakhi Gupta, Julie Baker, Edward Marcotte, John Wallingford RNA-seq: two biological replicates for control and RFX2 knockdown by morpholino injection, ChIP-seq: RFX2-GFP pulldown with GFP antibody, GFP only expression used as control 24424412 51735 SRP029582 SRR965781 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000943/SRR965781 GSM1224376 SRA100059 SRX345036 ChIP-Seq SINGLE SRP029582 PRJNA218018 50593 6 Taejoon Kwon Coordinated genomic control of ciliogenesis and cell movement by Rfx2 We have performed a systems-level analysis of the RFX/Daf-19 family transcription factor, Rfx2. Using a combination of high-throughput sequencing of R Taejoon Kwon, Mei-I Chung, Rakhi Gupta, Julie Baker, Edward Marcotte, John Wallingford RNA-seq: two biological replicates for control and RFX2 knockdown by morpholino injection, ChIP-seq: RFX2-GFP pulldown with GFP antibody, GFP only expression used as control 24424412 51735 SRP029582 SRR965782 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/000943/SRR965782 GSM1224377 SRA100059 SRX345037 ChIP-Seq SINGLE SRP029582 PRJNA218018 52809 1 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039856 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039856 GSM1276537 SRA114402 SRX384666 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 2 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039857 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039857 GSM1276538 SRA114402 SRX384667 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 3 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039858 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039858 GSM1276539 SRA114402 SRX384668 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 4 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039859 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039859 GSM1276540 SRA114402 SRX384669 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 5 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039860 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039860 GSM1276541 SRA114402 SRX384670 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 6 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039861 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039861 GSM1276542 SRA114402 SRX384671 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 7 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039862 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001015/SRR1039862 GSM1276543 SRA114402 SRX384672 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 8 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039863 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001015/SRR1039863 GSM1276544 SRA114402 SRX384673 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 9 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039864 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039864 GSM1276545 SRA114402 SRX384674 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 10 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039865 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001015/SRR1039865 GSM1276546 SRA114402 SRX384675 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 11 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039866 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039866 GSM1276547 SRA114402 SRX384676 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 12 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039867 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039867 GSM1276548 SRA114402 SRX384677 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 13 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146617 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146617 GSM1276549 SRA114402 SRX384678 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 14 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039869 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039869 GSM1276550 SRA114402 SRX384679 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 15 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039870 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039870 GSM1276551 SRA114402 SRX384680 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 16 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039871 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039871 GSM1276552 SRA114402 SRX384681 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 17 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039872 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039872 GSM1276553 SRA114402 SRX384682 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 18 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039873 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039873 GSM1276554 SRA114402 SRX384683 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 19 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039874 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001015/SRR1039874 GSM1276555 SRA114402 SRX384684 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 20 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039875 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039875 GSM1276556 SRA114402 SRX384685 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 21 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039876 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039876 GSM1276557 SRA114402 SRX384686 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 22 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039877 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001015/SRR1039877 GSM1276558 SRA114402 SRX384687 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 23 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039878 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039878 GSM1276559 SRA114402 SRX384688 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 24 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039879 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039879 GSM1276560 SRA114402 SRX384689 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 25 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039880 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001015/SRR1039880 GSM1276561 SRA114402 SRX384690 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 26 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039881 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039881 GSM1276562 SRA114402 SRX384691 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 27 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039882 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039882 GSM1276563 SRA114402 SRX384692 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 28 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146618 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001119/SRR1146618 GSM1276564 SRA114402 SRX384693 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 29 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1039884 https://sra-download.ncbi.nlm.nih.gov/traces/sra14/SRR/001015/SRR1039884 GSM1276565 SRA114402 SRX384694 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 30 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146615 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146615 GSM1276566 SRA114402 SRX384695 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 31 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146542 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146542 GSM1316794 SRA114402 SRX451671 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 32 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146543 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146543 GSM1316795 SRA114402 SRX451672 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 33 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146544 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146544 GSM1316796 SRA114402 SRX451673 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 34 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146545 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146545 GSM1316797 SRA114402 SRX451674 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 35 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146546 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146546 GSM1316798 SRA114402 SRX451675 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 36 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146547 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146547 GSM1316799 SRA114402 SRX451676 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 37 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146548 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146548 GSM1316800 SRA114402 SRX451677 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 38 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146549 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146549 GSM1316801 SRA114402 SRX451678 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 39 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146550 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146550 GSM1316802 SRA114402 SRX451679 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 40 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146551 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146551 GSM1316803 SRA114402 SRX451680 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 41 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146552 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146552 GSM1316804 SRA114402 SRX451681 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 42 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146553 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146553 GSM1316805 SRA114402 SRX451682 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 43 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146554 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146554 GSM1316806 SRA114402 SRX451683 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 44 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146555 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146555 GSM1316807 SRA114402 SRX451684 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 45 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146556 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146556 GSM1316808 SRA114402 SRX451685 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 46 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146557 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146557 GSM1316809 SRA114402 SRX451686 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 47 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146558 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146558 GSM1316810 SRA114402 SRX451687 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 48 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146559 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146559 GSM1316811 SRA114402 SRX451688 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 49 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146560 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/001119/SRR1146560 GSM1316812 SRA114402 SRX451689 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 50 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146561 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146561 GSM1316813 SRA114402 SRX451690 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 51 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146562 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146562 GSM1316814 SRA114402 SRX451691 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 52 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146563 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146563 GSM1316815 SRA114402 SRX451692 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 53 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146564 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146564 GSM1316816 SRA114402 SRX451693 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 54 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146565 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146565 GSM1316817 SRA114402 SRX451694 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 55 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146566 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146566 GSM1316818 SRA114402 SRX451695 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 56 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146567 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146567 GSM1316819 SRA114402 SRX451696 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 57 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146568 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146568 GSM1316820 SRA114402 SRX451697 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 58 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146569 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146569 GSM1316821 SRA114402 SRX451698 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 59 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146570 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146570 GSM1316822 SRA114402 SRX451699 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 60 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146571 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146571 GSM1316823 SRA114402 SRX451700 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 61 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146572 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146572 GSM1316824 SRA114402 SRX451701 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 62 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146573 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146573 GSM1316825 SRA114402 SRX451702 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 63 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146574 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146574 GSM1316826 SRA114402 SRX451703 RNA-Seq SINGLE SRP033369 PRJNA230112 52809 64 Stephen Eichhorn Poly(A)-tail profiling reveals an embryonic switch in translational control Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths hav Stephen Eichhorn, Alexander Subtelny, Stephen Eichhorn, Grace Chen, Hazel Sive, David Bartel 64 samples from a variety of species 24476825 48919 SRP033369 SRR1146575 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001119/SRR1146575 GSM1316827 SRA114402 SRX451704 RNA-Seq SINGLE SRP033369 PRJNA230112 53652 1 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [ChIP-seq] We defined the genome-wide binding regions of Smad2/3 and Foxh1 at mid-gastrula stage Xenopus tropicalis embryos, at which Nodal signaling and Foxh1 a William Chiu, William Chiu, Ken Cho Binding profile of the TFs Smad2/3 and Foxh1 in gastrula stage (st10.5) Xenopus tropicalis embryos using ChIP-seq approach. 25359723 49634 SRP034730 SRR1060744 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060744 GSM1298090 SRA122377 SRX399447 ChIP-Seq SINGLE SRP034730 PRJNA232589 53652 2 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [ChIP-seq] We defined the genome-wide binding regions of Smad2/3 and Foxh1 at mid-gastrula stage Xenopus tropicalis embryos, at which Nodal signaling and Foxh1 a William Chiu, William Chiu, Ken Cho Binding profile of the TFs Smad2/3 and Foxh1 in gastrula stage (st10.5) Xenopus tropicalis embryos using ChIP-seq approach. 25359723 49634 SRP034730 SRR1060745 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060745 GSM1298091 SRA122377 SRX399448 ChIP-Seq SINGLE SRP034730 PRJNA232589 53652 3 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [ChIP-seq] We defined the genome-wide binding regions of Smad2/3 and Foxh1 at mid-gastrula stage Xenopus tropicalis embryos, at which Nodal signaling and Foxh1 a William Chiu, William Chiu, Ken Cho Binding profile of the TFs Smad2/3 and Foxh1 in gastrula stage (st10.5) Xenopus tropicalis embryos using ChIP-seq approach. 25359723 49634 SRP034730 SRR1060746 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060746 GSM1298092 SRA122377 SRX399449 ChIP-Seq SINGLE SRP034730 PRJNA232589 53652 4 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [ChIP-seq] We defined the genome-wide binding regions of Smad2/3 and Foxh1 at mid-gastrula stage Xenopus tropicalis embryos, at which Nodal signaling and Foxh1 a William Chiu, William Chiu, Ken Cho Binding profile of the TFs Smad2/3 and Foxh1 in gastrula stage (st10.5) Xenopus tropicalis embryos using ChIP-seq approach. 25359723 49634 SRP034730 SRR1060747 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060747 GSM1298093 SRA122377 SRX399450 ChIP-Seq SINGLE SRP034730 PRJNA232589 53652 5 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [ChIP-seq] We defined the genome-wide binding regions of Smad2/3 and Foxh1 at mid-gastrula stage Xenopus tropicalis embryos, at which Nodal signaling and Foxh1 a William Chiu, William Chiu, Ken Cho Binding profile of the TFs Smad2/3 and Foxh1 in gastrula stage (st10.5) Xenopus tropicalis embryos using ChIP-seq approach. 25359723 49634 SRP034730 SRR1060748 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060748 GSM1298094 SRA122377 SRX399451 ChIP-Seq SINGLE SRP034730 PRJNA232589 53653 1 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [RNA-seq] We identified Nodal and Foxh1 downstream targets by performing RNA-seq of embryos either treated with small molecule SB431542 or microinjected morphol William Chiu, William Chiu, Ken Cho Differential gene expression analyses of perturbed embryos (SB431542 treated, or Foxh1 MO injected) using RNA-seq 25359723 49634 SRP034731 SRR1060749 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060749 GSM1298095 SRA122378 SRX399452 RNA-Seq SINGLE SRP034731 PRJNA232590 53653 2 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [RNA-seq] We identified Nodal and Foxh1 downstream targets by performing RNA-seq of embryos either treated with small molecule SB431542 or microinjected morphol William Chiu, William Chiu, Ken Cho Differential gene expression analyses of perturbed embryos (SB431542 treated, or Foxh1 MO injected) using RNA-seq 25359723 49634 SRP034731 SRR1060750 https://sra-download.ncbi.nlm.nih.gov/traces/sra15/SRR/001035/SRR1060750 GSM1298096 SRA122378 SRX399453 RNA-Seq SINGLE SRP034731 PRJNA232590 53653 3 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [RNA-seq] We identified Nodal and Foxh1 downstream targets by performing RNA-seq of embryos either treated with small molecule SB431542 or microinjected morphol William Chiu, William Chiu, Ken Cho Differential gene expression analyses of perturbed embryos (SB431542 treated, or Foxh1 MO injected) using RNA-seq 25359723 49634 SRP034731 SRR1060751 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001035/SRR1060751 GSM1298097 SRA122378 SRX399454 RNA-Seq SINGLE SRP034731 PRJNA232590 53653 4 William Chiu Genome-wide view of TGFb/Foxh1 regulation of the early mesendoderm program [RNA-seq] We identified Nodal and Foxh1 downstream targets by performing RNA-seq of embryos either treated with small molecule SB431542 or microinjected morphol William Chiu, William Chiu, Ken Cho Differential gene expression analyses of perturbed embryos (SB431542 treated, or Foxh1 MO injected) using RNA-seq 25359723 49634 SRP034731 SRR1060752 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001035/SRR1060752 GSM1298098 SRA122378 SRX399455 RNA-Seq SINGLE SRP034731 PRJNA232590 56000 1 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199229 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001171/SRR1199229 GSM1350502 SRA147084 SRX495638 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 2 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199230 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001171/SRR1199230 GSM1350503 SRA147084 SRX495639 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 3 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199231 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001171/SRR1199231 GSM1350504 SRA147084 SRX495640 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 4 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199232 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199232 GSM1350505 SRA147084 SRX495641 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 5 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199233 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199233 GSM1350506 SRA147084 SRX495642 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 6 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199234 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001171/SRR1199234 GSM1350506 SRA147084 SRX495642 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 7 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199235 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199235 GSM1350507 SRA147084 SRX495643 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 8 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199236 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199236 GSM1350508 SRA147084 SRX495644 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 9 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793867 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793867 GSM1350508 SRA147084 SRX495644 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 10 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793868 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793868 GSM1350509 SRA147084 SRX495645 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 11 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199237 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001171/SRR1199237 GSM1350509 SRA147084 SRX495645 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 12 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199238 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001171/SRR1199238 GSM1350510 SRA147084 SRX495646 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 13 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793869 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793869 GSM1350510 SRA147084 SRX495646 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 14 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793870 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793870 GSM1350511 SRA147084 SRX495647 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 15 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199239 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001171/SRR1199239 GSM1350511 SRA147084 SRX495647 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 16 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199240 https://sra-download.ncbi.nlm.nih.gov/traces/sra37/SRR/001171/SRR1199240 GSM1350512 SRA147084 SRX495648 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 17 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793871 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793871 GSM1350512 SRA147084 SRX495648 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 18 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793933 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793933 GSM1350512 SRA147084 SRX495648 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 19 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793935 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/001751/SRR1793935 GSM1350512 SRA147084 SRX495648 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 20 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793872 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793872 GSM1350513 SRA147084 SRX495649 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 21 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199241 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199241 GSM1350513 SRA147084 SRX495649 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 22 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199242 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199242 GSM1350514 SRA147084 SRX495650 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 23 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793873 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793873 GSM1350514 SRA147084 SRX495650 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 24 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793874 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793874 GSM1350515 SRA147084 SRX495651 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 25 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199243 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199243 GSM1350515 SRA147084 SRX495651 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 26 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199244 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001171/SRR1199244 GSM1350516 SRA147084 SRX495652 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 27 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793875 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001751/SRR1793875 GSM1350516 SRA147084 SRX495652 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 28 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793828 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/001751/SRR1793828 GSM1350517 SRA147084 SRX495653 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 29 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199245 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001171/SRR1199245 GSM1350517 SRA147084 SRX495653 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 30 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199246 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001171/SRR1199246 GSM1350518 SRA147084 SRX495654 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 31 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793829 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/001751/SRR1793829 GSM1350518 SRA147084 SRX495654 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 32 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1793830 https://sra-download.ncbi.nlm.nih.gov/traces/sra0/SRR/001751/SRR1793830 GSM1350519 SRA147084 SRX495655 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 33 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199247 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/001171/SRR1199247 GSM1350519 SRA147084 SRX495655 ChIP-Seq PAIRED SRP040298 PRJNA242234 56000 34 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199248 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199248 GSM1350520 SRA147084 SRX495656 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 35 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199249 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199249 GSM1350521 SRA147084 SRX495657 ChIP-Seq SINGLE SRP040298 PRJNA242234 56000 36 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199250 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199250 GSM1350522 SRA147084 SRX495658 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 37 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199251 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199251 GSM1350522 SRA147084 SRX495658 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 38 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199252 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199252 GSM1350523 SRA147084 SRX495659 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 39 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199253 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199253 GSM1350523 SRA147084 SRX495659 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 40 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199254 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199254 GSM1350524 SRA147084 SRX495660 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 41 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199255 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199255 GSM1350524 SRA147084 SRX495660 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 42 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199256 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199256 GSM1350525 SRA147084 SRX495661 RNA-Seq SINGLE SRP040298 PRJNA242234 56000 43 Julie Baker Enhancer chromatin signatures predict Smad2/3 binding in Xenopus In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic Julie Baker, Rakhi Gupta We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq 25205067 49423 SRP040298 SRR1199257 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001171/SRR1199257 GSM1350525 SRA147084 SRX495661 RNA-Seq SINGLE SRP040298 PRJNA242234 56169 1 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204599 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001176/SRR1204599 GSM1357032 SRA149110 SRX500916 ChIP-Seq SINGLE SRP040548 PRJNA242626 56169 2 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204600 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204600 GSM1357033 SRA149110 SRX500917 ChIP-Seq SINGLE SRP040548 PRJNA242626 56169 3 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204601 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204601 GSM1357034 SRA149110 SRX500918 ChIP-Seq SINGLE SRP040548 PRJNA242626 56169 4 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204602 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204602 GSM1357035 SRA149110 SRX500919 ChIP-Seq SINGLE SRP040548 PRJNA242626 56169 5 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204604 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204604 GSM1357037 SRA149110 SRX500921 ChIP-Seq SINGLE SRP040548 PRJNA242626 56169 6 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204605 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204605 GSM1357038 SRA149110 SRX500922 ChIP-Seq SINGLE SRP040548 PRJNA242626 56169 7 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204606 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204606 GSM1357039 SRA149110 SRX500923 RNA-Seq SINGLE SRP040548 PRJNA242626 56169 8 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204607 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204607 GSM1357040 SRA149110 SRX500924 RNA-Seq SINGLE SRP040548 PRJNA242626 56169 9 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204608 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204608 GSM1357041 SRA149110 SRX500925 RNA-Seq SINGLE SRP040548 PRJNA242626 56169 10 Andrea Wills E2a is necessary for Smad2/3 dependent transcription and the direct repression of lefty We characterized the binding of Smad2/3 using ChIP-SEQ in both control gastrula-stage X. tropicalis embryos and embryos depleted of the transcription Andrea Wills, Andrea Wills, Julie Baker For ChIP-Seq, three biological replicates were performed for E2a-depleted X. tropicalis embryos, and two biological replicates were performed for control gastrula-stage embryos. For RNA-Seq, two biological replicates were performed for both E2a-depleted embryos and control embryos, and the mean expression levels were compared for each gene. 25669884 50519 SRP040548 SRR1204609 https://sra-download.ncbi.nlm.nih.gov/traces/sra17/SRR/001176/SRR1204609 GSM1357042 SRA149110 SRX500926 RNA-Seq SINGLE SRP040548 PRJNA242626 56242 1 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205735 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205735 GSM1357541 SRA149315 SRX501597 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 2 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205736 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205736 GSM1357542 SRA149315 SRX501598 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 3 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205737 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205737 GSM1357543 SRA149315 SRX501599 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 4 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205738 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205738 GSM1357544 SRA149315 SRX501600 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 5 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205739 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205739 GSM1357545 SRA149315 SRX501601 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 6 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205740 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205740 GSM1357546 SRA149315 SRX501602 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 7 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205741 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205741 GSM1357547 SRA149315 SRX501603 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 8 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205742 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205742 GSM1357548 SRA149315 SRX501604 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 9 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205743 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205743 GSM1357549 SRA149315 SRX501605 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 10 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205744 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205744 GSM1357550 SRA149315 SRX501606 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 11 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205745 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205745 GSM1357551 SRA149315 SRX501607 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 12 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205746 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205746 GSM1357552 SRA149315 SRX501608 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 13 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205747 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205747 GSM1357553 SRA149315 SRX501609 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 14 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205748 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205748 GSM1357554 SRA149315 SRX501610 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 15 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205749 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205749 GSM1357555 SRA149315 SRX501611 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 16 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205750 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205750 GSM1357556 SRA149315 SRX501612 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 17 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205751 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205751 GSM1357557 SRA149315 SRX501613 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 18 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205752 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205752 GSM1357558 SRA149315 SRX501614 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 19 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205753 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205753 GSM1357559 SRA149315 SRX501615 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 20 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205754 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205754 GSM1357560 SRA149315 SRX501616 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 21 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205755 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205755 GSM1357561 SRA149315 SRX501617 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 22 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205756 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205756 GSM1357562 SRA149315 SRX501618 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 23 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205757 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205757 GSM1357563 SRA149315 SRX501619 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 24 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205758 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/001177/SRR1205758 GSM1357564 SRA149315 SRX501620 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 25 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205759 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205759 GSM1357565 SRA149315 SRX501621 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 26 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205760 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205760 GSM1357566 SRA149315 SRX501622 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 27 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205761 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205761 GSM1357567 SRA149315 SRX501623 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 28 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205762 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205762 GSM1357568 SRA149315 SRX501624 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 29 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205763 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205763 GSM1357569 SRA149315 SRX501625 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 30 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205764 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205764 GSM1357570 SRA149315 SRX501626 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 31 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205765 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205765 GSM1357571 SRA149315 SRX501627 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 32 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205766 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205766 GSM1357572 SRA149315 SRX501628 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 33 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205767 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205767 GSM1357573 SRA149315 SRX501629 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 34 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205768 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205768 GSM1357574 SRA149315 SRX501630 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 35 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205769 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205769 GSM1357575 SRA149315 SRX501631 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 36 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205770 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205770 GSM1357576 SRA149315 SRX501632 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 37 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205771 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205771 GSM1357577 SRA149315 SRX501633 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 38 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205772 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205772 GSM1357578 SRA149315 SRX501634 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 39 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205773 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205773 GSM1357579 SRA149315 SRX501635 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 40 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205774 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205774 GSM1357580 SRA149315 SRX501636 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 41 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205775 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205775 GSM1357581 SRA149315 SRX501637 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 42 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205776 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205776 GSM1357582 SRA149315 SRX501638 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 43 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205777 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205777 GSM1357583 SRA149315 SRX501639 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 44 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205778 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205778 GSM1357584 SRA149315 SRX501640 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 45 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205779 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205779 GSM1357585 SRA149315 SRX501641 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 46 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205780 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205780 GSM1357586 SRA149315 SRX501642 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 47 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205781 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205781 GSM1357587 SRA149315 SRX501643 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 48 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205782 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205782 GSM1357588 SRA149315 SRX501644 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 49 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205783 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205783 GSM1357589 SRA149315 SRX501645 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 50 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205784 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205784 GSM1357590 SRA149315 SRX501646 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 51 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205785 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205785 GSM1357591 SRA149315 SRX501647 RNA-Seq PAIRED SRP040589 PRJNA242712 56242 52 Mike Gilchrist High-resolution analysis of gene activity during the Xenopus mid-blastula transition The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss Mike Gilchrist, Clara Collart, Nick Owens, Leena Bhaw-Rosun, Brook Cooper, Elena De Domenico, Ilya Patrushev, Abdul Sesay, James Smith, James Smith, Michael Gilchrist Time series polyA+ and RiboZero RNA sequencing of Xenopus Embryos covering 0-9.5 hours post fertilization 24757007 48872 SRP040589 SRR1205786 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001177/SRR1205786 GSM1357592 SRA149315 SRX501648 RNA-Seq PAIRED SRP040589 PRJNA242712 56586 1 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1222414 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001193/SRR1222414 GSM1364749 SRA156772 SRX512838 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 2 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1222415 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001193/SRR1222415 GSM1364750 SRA156772 SRX512839 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 3 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1222416 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001193/SRR1222416 GSM1364751 SRA156772 SRX512840 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 4 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1222417 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001193/SRR1222417 GSM1364752 SRA156772 SRX512841 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 5 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1222418 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001193/SRR1222418 GSM1364753 SRA156772 SRX512842 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 6 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509447 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509447 GSM1430926 SRA156772 SRX648247 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 7 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509448 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509448 GSM1430927 SRA156772 SRX648248 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 8 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509449 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509449 GSM1430928 SRA156772 SRX648249 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 9 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509450 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509450 GSM1430929 SRA156772 SRX648250 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 10 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509451 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509451 GSM1430930 SRA156772 SRX648251 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 11 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509452 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509452 GSM1430931 SRA156772 SRX648252 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 12 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509453 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509453 GSM1430932 SRA156772 SRX648253 RNA-Seq SINGLE SRP041021 PRJNA244000 56586 13 Gert Jan Veenstra Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs Recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells. In contrast, single cell prote Gert Jan Veenstra, Arne Smits, Rik Lindeboom, Matteo Perino, Simon van Heeringen, GertJan Veenstra, Michiel Vermeulen RNA-seq in Xenopus laevis of 5 replicates of both single eggs and single embryos. 25056316 49279 SRP041021 SRR1509454 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001474/SRR1509454 GSM1430933 SRA156772 SRX648254 RNA-Seq SINGLE SRP041021 PRJNA244000 56680 1 Maria Warnefors MicroRNA editing in Xenopus tropicalis We collected small RNA sequencing data from brain and heart of an adult Xenopus tropicalis individual to investigate the conservation of site-specific Maria Warnefors, Angélica Liechti, Jean Halbert, Delphine Valloton, Henrik Kaessmann Sequencing of 2 small RNA sequencing libraries 24964909 50469 SRP041076 SRR1231993 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001203/SRR1231993 GSM1366781 SRA157273 SRX514968 miRNA-Seq SINGLE SRP041076 PRJNA244299 56680 2 Maria Warnefors MicroRNA editing in Xenopus tropicalis We collected small RNA sequencing data from brain and heart of an adult Xenopus tropicalis individual to investigate the conservation of site-specific Maria Warnefors, Angélica Liechti, Jean Halbert, Delphine Valloton, Henrik Kaessmann Sequencing of 2 small RNA sequencing libraries 24964909 50469 SRP041076 SRR1231994 https://sra-download.ncbi.nlm.nih.gov/traces/sra18/SRR/001203/SRR1231994 GSM1366782 SRA157273 SRX514969 miRNA-Seq SINGLE SRP041076 PRJNA244299 58420 1 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382030 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382030 GSM1410597 SRA170144 SRX591680 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 2 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382031 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382031 GSM1410598 SRA170144 SRX591681 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 3 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382032 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382032 GSM1410599 SRA170144 SRX591682 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 4 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382033 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382033 GSM1410600 SRA170144 SRX591683 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 5 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382034 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382034 GSM1410601 SRA170144 SRX591684 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 6 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382035 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382035 GSM1410602 SRA170144 SRX591685 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 7 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382036 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382036 GSM1410603 SRA170144 SRX591686 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 8 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382037 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382037 GSM1410604 SRA170144 SRX591687 RNA-Seq PAIRED SRP043147 PRJNA252563 58420 9 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382038 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382038 GSM1410605 SRA170144 SRX591688 RNA-Seq SINGLE SRP043147 PRJNA252563 58420 10 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382039 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382039 GSM1410606 SRA170144 SRX591689 RNA-Seq SINGLE SRP043147 PRJNA252563 58420 11 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382040 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382040 GSM1410607 SRA170144 SRX591690 RNA-Seq SINGLE SRP043147 PRJNA252563 58420 12 Gabriela Salinas-Riester Next generation sequencing identifies differentially localized transcripts in Xenopus laevis and Xenopus tropicalis oocytes RNA-seq technology was used to identify differentially localized transcripts from Xenopus laevis and Xenopus tropicalis stage VI oocytes. Besides the Gabriela Salinas-Riester, Maike Claußen, Tomas Pieler mRNA profiles of Xenopus laevis and Xenopus tropicalis animal and vegetal oocyte halves were generated by RNA-seq technology. For Xenopus laevis, animal and vegetal oocyte RNA preparations from two different females were generated in duplicates. For Xenopus tropicalis, animal and vegetal oocyte RNA preparations from two different females were analyzed. 26337391 51224 SRP043147 SRR1382041 https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/001349/SRR1382041 GSM1410608 SRA170144 SRX591691 RNA-Seq SINGLE SRP043147 PRJNA252563 59309 1 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511454 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511454 GSM1434771 SRA174832 SRX649157 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 2 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511455 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511455 GSM1434772 SRA174832 SRX649158 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 3 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511456 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511456 GSM1434773 SRA174832 SRX649159 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 4 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511457 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511457 GSM1434774 SRA174832 SRX649160 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 5 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511458 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511458 GSM1434775 SRA174832 SRX649161 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 6 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511459 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511459 GSM1434776 SRA174832 SRX649162 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 7 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511460 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511460 GSM1434777 SRA174832 SRX649163 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 8 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511461 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511461 GSM1434778 SRA174832 SRX649164 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 9 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511462 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511462 GSM1434779 SRA174832 SRX649165 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 10 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511463 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511463 GSM1434780 SRA174832 SRX649166 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 11 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511464 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511464 GSM1434781 SRA174832 SRX649167 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 12 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511465 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511465 GSM1434782 SRA174832 SRX649168 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 13 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511466 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511466 GSM1434783 SRA174832 SRX649169 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 14 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511467 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511467 GSM1434784 SRA174832 SRX649170 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 15 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511468 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511468 GSM1434785 SRA174832 SRX649171 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 16 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511469 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511469 GSM1434786 SRA174832 SRX649172 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 17 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511470 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511470 GSM1434787 SRA174832 SRX649173 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 18 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511471 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511471 GSM1434788 SRA174832 SRX649174 RNA-Seq SINGLE SRP044238 PRJNA255038 59309 19 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511472 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511472 GSM1434789 SRA174832 SRX649175 ChIP-Seq SINGLE SRP044238 PRJNA255038 59309 20 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511473 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511473 GSM1434789 SRA174832 SRX649175 ChIP-Seq SINGLE SRP044238 PRJNA255038 59309 21 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511474 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511474 GSM1434790 SRA174832 SRX649176 ChIP-Seq SINGLE SRP044238 PRJNA255038 59309 22 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511475 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511475 GSM1434790 SRA174832 SRX649176 ChIP-Seq SINGLE SRP044238 PRJNA255038 59309 23 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511476 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511476 GSM1434791 SRA174832 SRX649177 ChIP-Seq SINGLE SRP044238 PRJNA255038 59309 24 Ian Quigley Multicilin drives centriole biogenesis via E2f proteins Biochemistry suggests e2f4 forms a complex with the coiled-coiled protein multicilin (MCIDAS), a protein that is necessary and sufficient to specify m Ian Quigley, Lina Ma, Chris Kintner RNAseq: misexpression of multicilin-HGR +/- dominant-negative e2f4 messenger RNAs in X. laevis animal caps, multicilin induced with dexamethasone at mid-stage 11 and harvested at 3 timepoints (3, 6, and 9 hours after induction, roughly corresponding to stages 13, 16, and 18) with 3 biological replicates. ChIPseq: misexpression of e2f4-GFP +/- multicilin-HGR messenger RNAs in X. laevis animal caps, multicilin induced at mid-stage 11 and harvested at one timepoint (6 hours after induction, roughly corresponding to stage 16), immunoprecipitated with anti-GFP and sequenced; 2 biological replicates. Background was input prior to IP. 24934224 49750 SRP044238 SRR1511477 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001476/SRR1511477 GSM1434792 SRA174832 SRX649178 ChIP-Seq SINGLE SRP044238 PRJNA255038 63228 1 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649292 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649292 GSM1544070 SRA200904 SRX758227 RNA-Seq SINGLE SRP049739 PRJNA267016 63228 2 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649293 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649293 GSM1544071 SRA200904 SRX758228 RNA-Seq SINGLE SRP049739 PRJNA267016 63228 3 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649294 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649294 GSM1544072 SRA200904 SRX758229 RNA-Seq SINGLE SRP049739 PRJNA267016 63228 4 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649295 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649295 GSM1544073 SRA200904 SRX758230 RNA-Seq SINGLE SRP049739 PRJNA267016 63228 5 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649296 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649296 GSM1544074 SRA200904 SRX758231 RNA-Seq SINGLE SRP049739 PRJNA267016 63228 6 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649297 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649297 GSM1544075 SRA200904 SRX758232 RNA-Seq SINGLE SRP049739 PRJNA267016 63228 7 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649298 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649298 GSM1544076 SRA200904 SRX758233 ncRNA-Seq SINGLE SRP049739 PRJNA267016 63228 8 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649299 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649299 GSM1544077 SRA200904 SRX758234 ncRNA-Seq SINGLE SRP049739 PRJNA267016 63228 9 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649300 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649300 GSM1544078 SRA200904 SRX758235 RIP-Seq SINGLE SRP049739 PRJNA267016 63228 10 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649301 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649301 GSM1544079 SRA200904 SRX758236 RIP-Seq SINGLE SRP049739 PRJNA267016 63228 11 Nelson Lau Xenopus Piwi protein associated transcripts indicate regulation beyond transposons This study examines the population of transcripts associated with the Xenopus Piwi proteins, Xiwi and Xili, from X.laevis and X.tropicalis. RIP-seq, C Nelson Lau, Trey Toombs, Yuliya Sytnkova, Gungwei Chirn, Michael Blower We performed several replicates of a Piw CLIP-Seq experiment to isolate RNA fragments as CLIP-tags to discover which transcripts are preferentially bound by the Piwi protein. Then we performed several types of mRNA expression profiling experiments using several forms of mRNA-Seq library construction formats. Finally, we sequenced the piRNAs from the OSS cells 28031481 52877 SRP049739 SRR1649302 https://sra-download.ncbi.nlm.nih.gov/traces/sra22/SRR/001610/SRR1649302 GSM1544080 SRA200904 SRX758237 RNA-Seq SINGLE SRP049739 PRJNA267016 64551 1 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736289 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736289 GSM1574071 SRA221631 SRX825218 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 2 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736290 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736290 GSM1574072 SRA221631 SRX825219 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 3 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736291 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736291 GSM1574073 SRA221631 SRX825220 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 4 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736292 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736292 GSM1574074 SRA221631 SRX825221 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 5 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736293 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736293 GSM1574075 SRA221631 SRX825222 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 6 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736294 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736294 GSM1574076 SRA221631 SRX825223 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 7 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736295 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736295 GSM1574077 SRA221631 SRX825224 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 8 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736296 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736296 GSM1574078 SRA221631 SRX825225 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 9 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736297 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736297 GSM1574079 SRA221631 SRX825226 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 10 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736298 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736298 GSM1574080 SRA221631 SRX825227 RNA-Seq SINGLE SRP051597 PRJNA271289 64551 11 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736299 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736299 GSM1574081 SRA221631 SRX825228 ChIP-Seq SINGLE SRP051597 PRJNA271289 64551 12 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736300 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736300 GSM1574082 SRA221631 SRX825229 ChIP-Seq SINGLE SRP051597 PRJNA271289 64551 13 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736301 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736301 GSM1574083 SRA221631 SRX825230 ChIP-Seq SINGLE SRP051597 PRJNA271289 64551 14 Ian Quigley Occupancy and transcriptional profile of Prdm12 in posteriorized neural tissue V1 interneurons are a class of inhibitory neurons that play an essential role in vertebrate locomotion; however, the factors contributing to their spe Ian Quigley, Kristine Henningfeld, Chris Kintner, Eric Bellefroid, Claude Van Campenhout X. laevis embryos were injected with mRNAs encoding prdm12 constructs, along with the bmp inhibitor noggin. Presumptive ectoderm (neuralized by noggin) was dissected and treated with retinoic acid. Samples were then processed into RNAseq libraries or prdm12-FLAG was immunoprecipitated and its targets sequenced. Background was input prior to IP. 26443638 51355 SRP051597 SRR1736302 https://sra-download.ncbi.nlm.nih.gov/traces/sra24/SRR/001695/SRR1736302 GSM1574084 SRA221631 SRX825231 ChIP-Seq SINGLE SRP051597 PRJNA271289 65785 1 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795628 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795628 GSM1606268 SRA237121 SRX870931 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 2 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795629 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795629 GSM1606269 SRA237121 SRX870932 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 3 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795630 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795630 GSM1606270 SRA237121 SRX870933 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 4 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795631 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795631 GSM1606271 SRA237121 SRX870934 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 5 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795632 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795632 GSM1606272 SRA237121 SRX870935 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 6 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795633 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795633 GSM1606273 SRA237121 SRX870936 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 7 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795634 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795634 GSM1606274 SRA237121 SRX870937 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 8 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795635 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795635 GSM1606275 SRA237121 SRX870938 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 9 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795636 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795636 GSM1606276 SRA237121 SRX870939 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 10 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795637 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795637 GSM1606277 SRA237121 SRX870940 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 11 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795638 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795638 GSM1606278 SRA237121 SRX870941 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 12 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795639 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795639 GSM1606279 SRA237121 SRX870942 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 13 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795640 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795640 GSM1606280 SRA237121 SRX870943 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 14 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795641 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795641 GSM1606281 SRA237121 SRX870944 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 15 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795642 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795642 GSM1606282 SRA237121 SRX870945 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 16 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795643 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795643 GSM1606283 SRA237121 SRX870946 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 17 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795644 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795644 GSM1606284 SRA237121 SRX870947 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 18 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795645 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795645 GSM1606285 SRA237121 SRX870948 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 19 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795646 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795646 GSM1606286 SRA237121 SRX870949 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 20 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795647 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795647 GSM1606287 SRA237121 SRX870950 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 21 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795648 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795648 GSM1606288 SRA237121 SRX870951 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 22 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795649 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795649 GSM1606289 SRA237121 SRX870952 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 23 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795650 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795650 GSM1606290 SRA237121 SRX870953 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 24 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795651 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795651 GSM1606291 SRA237121 SRX870954 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 25 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795652 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795652 GSM1606292 SRA237121 SRX870955 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 26 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795653 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795653 GSM1606293 SRA237121 SRX870956 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 27 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795654 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795654 GSM1606294 SRA237121 SRX870957 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 28 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795655 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795655 GSM1606295 SRA237121 SRX870958 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 29 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795656 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795656 GSM1606296 SRA237121 SRX870959 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 30 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795657 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795657 GSM1606297 SRA237121 SRX870960 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 31 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795658 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795658 GSM1606298 SRA237121 SRX870961 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 32 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795659 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795659 GSM1606299 SRA237121 SRX870962 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 33 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795660 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795660 GSM1606300 SRA237121 SRX870963 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 34 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795661 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795661 GSM1606301 SRA237121 SRX870964 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 35 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795662 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795662 GSM1606302 SRA237121 SRX870965 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 36 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795663 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795663 GSM1606303 SRA237121 SRX870966 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 37 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795664 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795664 GSM1606304 SRA237121 SRX870967 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 38 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795665 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795665 GSM1606305 SRA237121 SRX870968 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 39 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795666 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795666 GSM1606306 SRA237121 SRX870969 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 40 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795667 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795667 GSM1606307 SRA237121 SRX870970 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 41 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795668 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795668 GSM1606308 SRA237121 SRX870971 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 42 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795669 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795669 GSM1606309 SRA237121 SRX870972 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 43 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795670 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795670 GSM1606310 SRA237121 SRX870973 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 44 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795671 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795671 GSM1606311 SRA237121 SRX870974 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 45 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795672 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795672 GSM1606312 SRA237121 SRX870975 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 46 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795673 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795673 GSM1606313 SRA237121 SRX870976 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 47 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795674 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795674 GSM1606314 SRA237121 SRX870977 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 48 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795675 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795675 GSM1606315 SRA237121 SRX870978 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 49 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795676 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795676 GSM1606316 SRA237121 SRX870979 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 50 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795677 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795677 GSM1606317 SRA237121 SRX870980 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 51 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795678 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795678 GSM1606318 SRA237121 SRX870981 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 52 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795679 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795679 GSM1606319 SRA237121 SRX870982 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 53 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795680 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795680 GSM1606320 SRA237121 SRX870983 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 54 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795681 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795681 GSM1606321 SRA237121 SRX870984 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 55 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795682 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795682 GSM1606322 SRA237121 SRX870985 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 56 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795683 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795683 GSM1606323 SRA237121 SRX870986 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 57 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795684 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795684 GSM1606324 SRA237121 SRX870987 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 58 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795685 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795685 GSM1606325 SRA237121 SRX870988 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 59 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795686 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795686 GSM1606326 SRA237121 SRX870989 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 60 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795687 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795687 GSM1606327 SRA237121 SRX870990 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 61 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795688 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795688 GSM1606328 SRA237121 SRX870991 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 62 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795689 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795689 GSM1606329 SRA237121 SRX870992 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 63 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795690 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795690 GSM1606330 SRA237121 SRX870993 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 64 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795691 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795691 GSM1606331 SRA237121 SRX870994 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 65 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795692 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795692 GSM1606332 SRA237121 SRX870995 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 66 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795693 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795693 GSM1606333 SRA237121 SRX870996 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 67 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795694 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795694 GSM1606334 SRA237121 SRX870997 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 68 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795695 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795695 GSM1606335 SRA237121 SRX870998 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 69 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795696 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795696 GSM1606336 SRA237121 SRX870999 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 70 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795697 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795697 GSM1606337 SRA237121 SRX871000 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 71 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795698 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795698 GSM1606338 SRA237121 SRX871001 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 72 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR2972862 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002903/SRR2972862 GSM1606339 SRA237121 SRX871002 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 73 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR2972863 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002903/SRR2972863 GSM1606340 SRA237121 SRX871003 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 74 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795701 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795701 GSM1606341 SRA237121 SRX871004 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 75 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795702 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795702 GSM1606342 SRA237121 SRX871005 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 76 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795703 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795703 GSM1606343 SRA237121 SRX871006 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 77 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795704 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795704 GSM1606344 SRA237121 SRX871007 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 78 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795705 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795705 GSM1606345 SRA237121 SRX871008 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 79 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795706 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795706 GSM1606346 SRA237121 SRX871009 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 80 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795707 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795707 GSM1606347 SRA237121 SRX871010 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 81 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795708 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795708 GSM1606348 SRA237121 SRX871011 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 82 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795709 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795709 GSM1606349 SRA237121 SRX871012 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 83 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795710 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795710 GSM1606350 SRA237121 SRX871013 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 84 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795711 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795711 GSM1606351 SRA237121 SRX871014 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 85 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795712 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795712 GSM1606352 SRA237121 SRX871015 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 86 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795713 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795713 GSM1606353 SRA237121 SRX871016 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 87 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR2972864 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002903/SRR2972864 GSM1606354 SRA237121 SRX871017 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 88 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR2972865 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002903/SRR2972865 GSM1606355 SRA237121 SRX871018 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 89 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795716 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795716 GSM1606356 SRA237121 SRX871019 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 90 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795717 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795717 GSM1606357 SRA237121 SRX871020 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 91 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795718 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795718 GSM1606358 SRA237121 SRX871021 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 92 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795719 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795719 GSM1606359 SRA237121 SRX871022 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 93 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795720 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795720 GSM1606360 SRA237121 SRX871023 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 94 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795721 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795721 GSM1606361 SRA237121 SRX871024 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 95 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795722 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795722 GSM1606362 SRA237121 SRX871025 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 96 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795723 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795723 GSM1606363 SRA237121 SRX871026 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 97 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795724 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795724 GSM1606364 SRA237121 SRX871027 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 98 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795725 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795725 GSM1606365 SRA237121 SRX871028 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 99 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795726 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795726 GSM1606366 SRA237121 SRX871029 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 100 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795727 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795727 GSM1606367 SRA237121 SRX871030 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 101 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795535 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795535 GSM1606175 SRA237121 SRX870838 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 102 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795536 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795536 GSM1606176 SRA237121 SRX870839 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 103 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795537 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795537 GSM1606177 SRA237121 SRX870840 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 104 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795538 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795538 GSM1606178 SRA237121 SRX870841 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 105 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795539 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795539 GSM1606179 SRA237121 SRX870842 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 106 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795540 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795540 GSM1606180 SRA237121 SRX870843 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 107 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795541 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795541 GSM1606181 SRA237121 SRX870844 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 108 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795542 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795542 GSM1606182 SRA237121 SRX870845 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 109 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795543 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795543 GSM1606183 SRA237121 SRX870846 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 110 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795544 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795544 GSM1606184 SRA237121 SRX870847 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 111 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795545 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795545 GSM1606185 SRA237121 SRX870848 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 112 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795546 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795546 GSM1606186 SRA237121 SRX870849 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 113 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795547 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795547 GSM1606187 SRA237121 SRX870850 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 114 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795548 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795548 GSM1606188 SRA237121 SRX870851 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 115 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795549 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795549 GSM1606189 SRA237121 SRX870852 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 116 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795550 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795550 GSM1606190 SRA237121 SRX870853 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 117 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795551 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795551 GSM1606191 SRA237121 SRX870854 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 118 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795552 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795552 GSM1606192 SRA237121 SRX870855 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 119 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795553 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795553 GSM1606193 SRA237121 SRX870856 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 120 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795554 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795554 GSM1606194 SRA237121 SRX870857 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 121 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795555 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795555 GSM1606195 SRA237121 SRX870858 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 122 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795556 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795556 GSM1606196 SRA237121 SRX870859 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 123 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795557 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795557 GSM1606197 SRA237121 SRX870860 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 124 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795558 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795558 GSM1606198 SRA237121 SRX870861 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 125 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795559 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795559 GSM1606199 SRA237121 SRX870862 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 126 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795560 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795560 GSM1606200 SRA237121 SRX870863 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 127 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795561 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795561 GSM1606201 SRA237121 SRX870864 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 128 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795562 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795562 GSM1606202 SRA237121 SRX870865 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 129 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795563 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795563 GSM1606203 SRA237121 SRX870866 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 130 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795564 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795564 GSM1606204 SRA237121 SRX870867 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 131 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795565 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795565 GSM1606205 SRA237121 SRX870868 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 132 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795566 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795566 GSM1606206 SRA237121 SRX870869 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 133 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795567 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795567 GSM1606207 SRA237121 SRX870870 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 134 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795568 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795568 GSM1606208 SRA237121 SRX870871 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 135 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795569 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795569 GSM1606209 SRA237121 SRX870872 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 136 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795570 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795570 GSM1606210 SRA237121 SRX870873 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 137 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795571 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795571 GSM1606211 SRA237121 SRX870874 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 138 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795572 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795572 GSM1606212 SRA237121 SRX870875 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 139 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795573 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795573 GSM1606213 SRA237121 SRX870876 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 140 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795574 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795574 GSM1606214 SRA237121 SRX870877 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 141 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795575 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795575 GSM1606215 SRA237121 SRX870878 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 142 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795576 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795576 GSM1606216 SRA237121 SRX870879 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 143 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795577 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795577 GSM1606217 SRA237121 SRX870880 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 144 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795578 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795578 GSM1606218 SRA237121 SRX870881 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 145 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795579 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795579 GSM1606219 SRA237121 SRX870882 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 146 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795580 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795580 GSM1606220 SRA237121 SRX870883 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 147 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795581 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795581 GSM1606221 SRA237121 SRX870884 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 148 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795582 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795582 GSM1606222 SRA237121 SRX870885 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 149 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795583 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795583 GSM1606223 SRA237121 SRX870886 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 150 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795584 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795584 GSM1606224 SRA237121 SRX870887 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 151 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795585 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795585 GSM1606225 SRA237121 SRX870888 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 152 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795586 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795586 GSM1606226 SRA237121 SRX870889 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 153 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795587 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795587 GSM1606227 SRA237121 SRX870890 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 154 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795588 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795588 GSM1606228 SRA237121 SRX870891 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 155 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795589 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795589 GSM1606229 SRA237121 SRX870892 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 156 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795590 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795590 GSM1606230 SRA237121 SRX870893 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 157 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795591 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795591 GSM1606231 SRA237121 SRX870894 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 158 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795592 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795592 GSM1606232 SRA237121 SRX870895 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 159 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795593 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795593 GSM1606233 SRA237121 SRX870896 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 160 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795594 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795594 GSM1606234 SRA237121 SRX870897 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 161 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795595 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795595 GSM1606235 SRA237121 SRX870898 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 162 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795596 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795596 GSM1606236 SRA237121 SRX870899 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 163 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795597 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795597 GSM1606237 SRA237121 SRX870900 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 164 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795598 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795598 GSM1606238 SRA237121 SRX870901 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 165 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795599 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795599 GSM1606239 SRA237121 SRX870902 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 166 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795600 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795600 GSM1606240 SRA237121 SRX870903 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 167 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795601 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795601 GSM1606241 SRA237121 SRX870904 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 168 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795602 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795602 GSM1606242 SRA237121 SRX870905 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 169 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795603 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795603 GSM1606243 SRA237121 SRX870906 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 170 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795604 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795604 GSM1606244 SRA237121 SRX870907 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 171 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795605 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795605 GSM1606245 SRA237121 SRX870908 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 172 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795606 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795606 GSM1606246 SRA237121 SRX870909 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 173 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795607 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795607 GSM1606247 SRA237121 SRX870910 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 174 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795608 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795608 GSM1606248 SRA237121 SRX870911 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 175 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795609 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795609 GSM1606249 SRA237121 SRX870912 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 176 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795610 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795610 GSM1606250 SRA237121 SRX870913 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 177 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795611 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795611 GSM1606251 SRA237121 SRX870914 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 178 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795612 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795612 GSM1606252 SRA237121 SRX870915 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 179 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795613 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795613 GSM1606253 SRA237121 SRX870916 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 180 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795614 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795614 GSM1606254 SRA237121 SRX870917 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 181 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795615 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795615 GSM1606255 SRA237121 SRX870918 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 182 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795616 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795616 GSM1606256 SRA237121 SRX870919 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 183 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795617 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795617 GSM1606257 SRA237121 SRX870920 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 184 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795618 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795618 GSM1606258 SRA237121 SRX870921 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 185 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795619 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795619 GSM1606259 SRA237121 SRX870922 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 186 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795620 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795620 GSM1606260 SRA237121 SRX870923 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 187 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795621 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795621 GSM1606261 SRA237121 SRX870924 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 188 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795622 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795622 GSM1606262 SRA237121 SRX870925 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 189 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795623 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795623 GSM1606263 SRA237121 SRX870926 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 190 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795624 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795624 GSM1606264 SRA237121 SRX870927 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 191 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795625 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795625 GSM1606265 SRA237121 SRX870928 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 192 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795626 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795626 GSM1606266 SRA237121 SRX870929 RNA-Seq PAIRED SRP053406 PRJNA275011 65785 193 Mike Gilchrist Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack Mike Gilchrist, Nick Owens, Ira Blitz, Maura Lane, Ilya Patrushev, John Overton, Michael Gilchrist, Ken Cho, Mustafa Khokha High Resolution Time series covering the first 66 hours of development of Xenopus tropicalis with PolyA+ and ribosomal depletion sequencing. 26774488 51804 SRP053406 SRR1795627 https://sra-download.ncbi.nlm.nih.gov/traces/sra25/SRR/001753/SRR1795627 GSM1606267 SRA237121 SRX870930 RNA-Seq PAIRED SRP053406 PRJNA275011 67974 1 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980165 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980165 GSM1659896 SRA259887 SRX999324 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 2 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980166 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980166 GSM1659897 SRA259887 SRX999325 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 3 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980167 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980167 GSM1659898 SRA259887 SRX999326 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 4 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980168 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980168 GSM1659899 SRA259887 SRX999327 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 5 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980169 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980169 GSM1659900 SRA259887 SRX999328 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 6 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980170 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980170 GSM1659901 SRA259887 SRX999329 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 7 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980171 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980171 GSM1659902 SRA259887 SRX999330 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 8 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980172 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980172 GSM1659903 SRA259887 SRX999331 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 9 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980173 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980173 GSM1659904 SRA259887 SRX999332 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 10 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980174 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980174 GSM1659905 SRA259887 SRX999333 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 11 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980175 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001933/SRR1980175 GSM1659906 SRA259887 SRX999334 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 12 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980176 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001933/SRR1980176 GSM1659907 SRA259887 SRX999335 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 13 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980177 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/001933/SRR1980177 GSM1659908 SRA259887 SRX999336 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 14 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980178 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980178 GSM1659909 SRA259887 SRX999337 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 15 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980179 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980179 GSM1659910 SRA259887 SRX999338 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 16 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980180 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980180 GSM1659911 SRA259887 SRX999339 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 17 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980181 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980181 GSM1659912 SRA259887 SRX999340 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 18 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980182 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980182 GSM1659913 SRA259887 SRX999341 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 19 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980183 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980183 GSM1659914 SRA259887 SRX999342 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 20 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980184 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980184 GSM1659915 SRA259887 SRX999343 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 21 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980185 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980185 GSM1659916 SRA259887 SRX999344 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 22 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980186 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980186 GSM1659917 SRA259887 SRX999345 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 23 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980187 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980187 GSM1659918 SRA259887 SRX999346 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 24 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980188 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980188 GSM1659919 SRA259887 SRX999347 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 25 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980189 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980189 GSM1659920 SRA259887 SRX999348 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 26 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980190 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980190 GSM1659921 SRA259887 SRX999349 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 27 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980191 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980191 GSM1659922 SRA259887 SRX999350 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 28 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980192 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980192 GSM1659923 SRA259887 SRX999351 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 29 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980193 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980193 GSM1659924 SRA259887 SRX999352 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 30 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980194 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980194 GSM1659925 SRA259887 SRX999353 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 31 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980195 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980195 GSM1659926 SRA259887 SRX999354 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 32 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980196 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980196 GSM1659927 SRA259887 SRX999355 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 33 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980197 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980197 GSM1659928 SRA259887 SRX999356 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 34 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980198 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980198 GSM1659929 SRA259887 SRX999357 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 35 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980199 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980199 GSM1659930 SRA259887 SRX999358 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 36 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980200 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980200 GSM1659931 SRA259887 SRX999359 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 37 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980201 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980201 GSM1659932 SRA259887 SRX999360 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 38 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980202 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980202 GSM1659933 SRA259887 SRX999361 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 39 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980203 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980203 GSM1659934 SRA259887 SRX999362 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 40 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980204 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980204 GSM1659935 SRA259887 SRX999363 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 41 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980205 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980205 GSM1659936 SRA259887 SRX999364 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 42 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980206 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980206 GSM1659937 SRA259887 SRX999365 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 43 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980207 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980207 GSM1659938 SRA259887 SRX999366 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 44 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980208 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980208 GSM1659939 SRA259887 SRX999367 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 45 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980209 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980209 GSM1659940 SRA259887 SRX999368 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 46 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980210 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980210 GSM1659941 SRA259887 SRX999369 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 47 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980211 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980211 GSM1659942 SRA259887 SRX999370 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 48 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980212 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980212 GSM1659943 SRA259887 SRX999371 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 49 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980213 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980213 GSM1659944 SRA259887 SRX999372 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 50 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980214 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980214 GSM1659945 SRA259887 SRX999373 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 51 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980215 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980215 GSM1659946 SRA259887 SRX999374 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 52 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980216 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980216 GSM1659947 SRA259887 SRX999375 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 53 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980217 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980217 GSM1659948 SRA259887 SRX999376 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 54 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980218 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980218 GSM1659949 SRA259887 SRX999377 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 55 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980219 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980219 GSM1659950 SRA259887 SRX999378 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 56 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980220 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980220 GSM1659951 SRA259887 SRX999379 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 57 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980221 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980221 GSM1659952 SRA259887 SRX999380 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 58 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980222 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980222 GSM1659953 SRA259887 SRX999381 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 59 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980223 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980223 GSM1659954 SRA259887 SRX999382 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 60 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR1980224 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001933/SRR1980224 GSM1659955 SRA259887 SRX999383 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 61 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2011510 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001964/SRR2011510 GSM1677167 SRA259887 SRX1020033 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 62 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353007 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353007 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 63 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353008 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353008 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 64 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353009 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353009 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 65 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353010 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353010 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 66 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353011 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353011 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 67 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353012 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353012 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 68 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353013 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353013 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 69 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353014 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353014 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 70 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353015 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353015 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 71 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353016 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353016 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 72 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353017 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353017 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 73 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353018 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353018 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 74 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR2353019 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002297/SRR2353019 GSM1875285 SRA259887 SRX1225083 Bisulfite-Seq SINGLE SRP057395 PRJNA281501 67974 75 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027514 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/002956/SRR3027514 GSM1974223 SRA259887 SRX1488584 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 76 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027515 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002956/SRR3027515 GSM1974224 SRA259887 SRX1488585 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 77 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027516 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002956/SRR3027516 GSM1974225 SRA259887 SRX1488586 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 78 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027517 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002956/SRR3027517 GSM1974226 SRA259887 SRX1488587 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 79 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027518 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/002956/SRR3027518 GSM1974227 SRA259887 SRX1488588 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 80 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027519 https://sra-download.ncbi.nlm.nih.gov/traces/sra37/SRR/002956/SRR3027519 GSM1974228 SRA259887 SRX1488589 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 81 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027520 https://sra-download.ncbi.nlm.nih.gov/traces/sra37/SRR/002956/SRR3027520 GSM1974229 SRA259887 SRX1488590 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 82 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027521 https://sra-download.ncbi.nlm.nih.gov/traces/sra37/SRR/002956/SRR3027521 GSM1974230 SRA259887 SRX1488591 ChIP-Seq SINGLE SRP057395 PRJNA281501 67974 83 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027522 https://sra-download.ncbi.nlm.nih.gov/traces/sra36/SRR/002956/SRR3027522 GSM1974231 SRA259887 SRX1488592 RNA-Seq SINGLE SRP057395 PRJNA281501 67974 84 Saartje Hontelez Embryonic transcription is controlled by maternally defined chromatin state During development histone modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origi Saartje Hontelez, GertJan Veenstra We have performed ChIP-sequencing of eight histone modifications, RNA polymerase II (RNAPII) and the enhancer protein p300 at five stages of development: blastula (st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30). These experiments allow identification of enhancers (H3K4me1, p300), promoters (H3K4me3, H3K9ac), transcribed regions (H3K36me3, RNAPII) and repressed and heterochromatic domains (H3K27me3, H3K9me2, H3K9me3, H4K20me3). In addition we generated pre-MBT (st. 8) maps for three histone modifications (H3K4me3, H3K9ac, H3K27me3) and single-base resolution DNA methylome maps using whole genome bisulfite sequencing of blastula and gastrula (st. 9 and 10.5) embryos. To determine the maternal and zygotic contributions to chromatin state, we used alpha-amanitin to block embryonic transcription. Fertilised eggs were injected with 2.3 nl of 2.67 ng/ul alpha-amanitin and developed until the control embryos reached mid-gastrulation. Alpha-amanitin and control embryos were used for RNA-seq and ChIP-seq of RNAPII, H3K4me3, H3K27me3 and p300. For all ChIP-seq samples of the epigenome reference maps and RNAPII ChIP-seq samples of the α-amanitin experiments three biological replicates of different chromatin isolations of 45 embryos were pooled. Two biological replicates for H3K4me3 (α-amanitin injected: resp. 90 and 56 embryo equivalents (eeq); control: resp. 45 and 67 eeq), H3K27me3 (α-amanitin injected: resp. 90 and 180 eeq; control: resp. 45 and 202 eeq) and p300 (α-amanitin injected: resp. 112 and 56 eeq; control: resp. 112 and 67 eeq) ChIP-seq samples of the α-amanitin experiments were generated. For RNA-seq samples of the α-amanitin experiments RNA from 5 embryos from one biological replicate was isolated and depleted of ribosomal RNA 26679111 51677 SRP057395 SRR3027523 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002956/SRR3027523 GSM1974232 SRA259887 SRX1488593 RNA-Seq SINGLE SRP057395 PRJNA281501 68087 1 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983665 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983665 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 2 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983666 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983666 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 3 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983667 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983667 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 4 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983668 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983668 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 5 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983669 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983669 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 6 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983670 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983670 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 7 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983671 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983671 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 8 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983672 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983672 GSM1662779 SRA260956 SRX1002590 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 9 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983673 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983673 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 10 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983674 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983674 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 11 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983675 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983675 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 12 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983676 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983676 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 13 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983677 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983677 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 14 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983678 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983678 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 15 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983679 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983679 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 16 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983680 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983680 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 17 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983681 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983681 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 18 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983682 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983682 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 19 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983683 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983683 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 20 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983684 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983684 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 21 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983685 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983685 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 22 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983686 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983686 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 23 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983687 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983687 GSM1662780 SRA260956 SRX1002591 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 24 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983688 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983688 GSM1662781 SRA260956 SRX1002592 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 25 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983689 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983689 GSM1662781 SRA260956 SRX1002592 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 26 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983690 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983690 GSM1662781 SRA260956 SRX1002592 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 27 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983691 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983691 GSM1662781 SRA260956 SRX1002592 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 28 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983692 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983692 GSM1662781 SRA260956 SRX1002592 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 29 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983693 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983693 GSM1662781 SRA260956 SRX1002592 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 30 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983694 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983694 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 31 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983695 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983695 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 32 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983696 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983696 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 33 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983697 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983697 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 34 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983698 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983698 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 35 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983699 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983699 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 36 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983700 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983700 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 37 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983701 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983701 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 38 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983702 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983702 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 39 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983703 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983703 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 40 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983704 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983704 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 41 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983705 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983705 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 42 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983706 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983706 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 43 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983707 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983707 GSM1662782 SRA260956 SRX1002593 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 44 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983708 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983708 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 45 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983709 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983709 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 46 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983710 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983710 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 47 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983711 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983711 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 48 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983712 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983712 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 49 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983713 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983713 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 50 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983714 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983714 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 51 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983715 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983715 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 52 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983716 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983716 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 53 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983717 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983717 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 54 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983718 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983718 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 55 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983719 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983719 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 56 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983720 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983720 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 57 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983721 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983721 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 58 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983722 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983722 GSM1662783 SRA260956 SRX1002594 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 59 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983723 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983723 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 60 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983724 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983724 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 61 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983725 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983725 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 62 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983726 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983726 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 63 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983727 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983727 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 64 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983728 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983728 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 65 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983729 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983729 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 66 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983730 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983730 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 67 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983731 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983731 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 68 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983732 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983732 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 69 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983733 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983733 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 70 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983734 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983734 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 71 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983735 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983735 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 72 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983736 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983736 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 73 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983737 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983737 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 74 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983738 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983738 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 75 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983739 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983739 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 76 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983740 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983740 GSM1662784 SRA260956 SRX1002595 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 77 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983741 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983741 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 78 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983742 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983742 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 79 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983743 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983743 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 80 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983744 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983744 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 81 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983745 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983745 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 82 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983746 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983746 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 83 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983747 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983747 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 84 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983748 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983748 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 85 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983749 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983749 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 86 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983750 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983750 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 87 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983751 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983751 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 88 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983752 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983752 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 89 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983753 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983753 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 90 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983754 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983754 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 91 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983755 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983755 GSM1662785 SRA260956 SRX1002596 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 92 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983756 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983756 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 93 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983757 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983757 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 94 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983758 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983758 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 95 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983759 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983759 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 96 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983760 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983760 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 97 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983761 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983761 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 98 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983762 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983762 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 99 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983763 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983763 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 100 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983764 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983764 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 101 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983765 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983765 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 102 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983766 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983766 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 103 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983767 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983767 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 104 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983768 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983768 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 105 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983769 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983769 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 106 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983770 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983770 GSM1662786 SRA260956 SRX1002597 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 107 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983771 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983771 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 108 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983772 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983772 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 109 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983773 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983773 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 110 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983774 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983774 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 111 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983775 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983775 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 112 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983776 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983776 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 113 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983777 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983777 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 114 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983778 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983778 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 115 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983779 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983779 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 116 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983780 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983780 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 117 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983781 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983781 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 118 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983782 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983782 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 119 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983783 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983783 GSM1662787 SRA260956 SRX1002598 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 120 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983784 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983784 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 121 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983785 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983785 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 122 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983786 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983786 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 123 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983787 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983787 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 124 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983788 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983788 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 125 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983789 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983789 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 126 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983790 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983790 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 127 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983791 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983791 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 128 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983792 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983792 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 129 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983793 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983793 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 130 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983794 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983794 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 131 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983795 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983795 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 132 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983796 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983796 GSM1662788 SRA260956 SRX1002599 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 133 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983797 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983797 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 134 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983798 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983798 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 135 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983799 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983799 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 136 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983800 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983800 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 137 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983801 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983801 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 138 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983802 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983802 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 139 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983803 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983803 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 140 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983804 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983804 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 141 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983805 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983805 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 142 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983806 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983806 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 143 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983807 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983807 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 144 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983808 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983808 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 145 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983809 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983809 GSM1662789 SRA260956 SRX1002600 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 146 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983810 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983810 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 147 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983811 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983811 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 148 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983812 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983812 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 149 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983813 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983813 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 150 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983814 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983814 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 151 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983815 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983815 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 152 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983816 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983816 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 153 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983817 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983817 GSM1662790 SRA260956 SRX1002601 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 154 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983818 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983818 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 155 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983819 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983819 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 156 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983820 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983820 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 157 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983821 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983821 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 158 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983822 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983822 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 159 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983823 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983823 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 160 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983824 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983824 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 161 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983825 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983825 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 162 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983826 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983826 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 163 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983827 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983827 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 164 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983828 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983828 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 165 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983829 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983829 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 166 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983830 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983830 GSM1662791 SRA260956 SRX1002602 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 167 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983831 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983831 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 168 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983832 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983832 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 169 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983833 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983833 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 170 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983834 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983834 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 171 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983835 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983835 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 172 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983836 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983836 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 173 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983837 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983837 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 174 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR1983838 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001937/SRR1983838 GSM1662792 SRA260956 SRX1002603 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 175 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179966 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179966 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 176 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179967 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179967 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 177 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179968 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179968 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 178 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179969 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179969 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 179 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179970 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179970 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 180 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179971 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179971 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 181 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179972 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179972 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 182 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179973 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179973 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 183 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179974 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179974 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 184 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179975 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179975 GSM1859497 SRA260956 SRX1162703 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 185 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179976 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179976 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 186 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179977 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179977 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 187 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179978 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179978 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 188 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179979 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179979 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 189 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179980 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179980 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 190 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179981 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179981 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 191 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179982 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179982 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 192 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179983 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179983 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 193 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179984 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179984 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 194 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179985 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179985 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 195 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179986 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179986 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 196 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179987 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179987 GSM1859498 SRA260956 SRX1162704 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 197 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179988 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179988 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 198 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179989 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179989 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 199 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179990 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179990 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 200 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179991 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179991 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 201 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179992 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179992 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 202 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179993 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179993 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 203 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179994 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179994 GSM1859499 SRA260956 SRX1162705 Bisulfite-Seq SINGLE SRP057505 PRJNA281741 68087 204 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179995 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179995 GSM1859500 SRA260956 SRX1162706 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 205 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179996 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179996 GSM1859501 SRA260956 SRX1162707 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 206 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179997 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179997 GSM1859502 SRA260956 SRX1162708 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 207 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179998 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179998 GSM1859503 SRA260956 SRX1162709 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 208 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2179999 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2179999 GSM1859504 SRA260956 SRX1162710 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 209 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180000 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180000 GSM1859505 SRA260956 SRX1162711 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 210 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180001 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180001 GSM1859506 SRA260956 SRX1162712 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 211 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180002 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180002 GSM1859507 SRA260956 SRX1162713 RNA-Seq SINGLE SRP057505 PRJNA281741 68087 212 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180003 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180003 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 213 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180004 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180004 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 214 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180005 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180005 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 215 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180006 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180006 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 216 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180007 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180007 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 217 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180008 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180008 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 218 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180009 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180009 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 219 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180010 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180010 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 220 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180011 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180011 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 221 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180012 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180012 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 222 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180013 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180013 GSM1859508 SRA260956 SRX1162714 OTHER SINGLE SRP057505 PRJNA281741 68087 223 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180014 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180014 GSM1859509 SRA260956 SRX1162715 OTHER PAIRED SRP057505 PRJNA281741 68087 224 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180015 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180015 GSM1859510 SRA260956 SRX1162716 OTHER PAIRED SRP057505 PRJNA281741 68087 225 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180016 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180016 GSM1859511 SRA260956 SRX1162717 OTHER PAIRED SRP057505 PRJNA281741 68087 226 Ozren Bogdanovic Active DNA demethylation at enhancers during the vertebrate phylotypic period The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage, however the mechanisms that guide the e Ozren Bogdanovic, Ryan Lister MethylC-Seq in zebrafish embryos, MethylC-seq in Xenopus tropicalis embryos, MethylC-seq in mouse embryos, MethylC-seq in zebrafish tissues, MethylC-seq in Xenopus tropicalis tissues, TAB-seq in zebrafish embryos, TAB-seq in Xenopus tropicalis embryos, TAB-seq in mouse embryos, RNA-seq in zebrafish embryos, RNA-seq in mouse embryos 26928226 51922 SRP057505 SRR2180017 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002128/SRR2180017 GSM1859512 SRA260956 SRX1162718 OTHER PAIRED SRP057505 PRJNA281741 68972 1 Xiaopeng Ma The identification of differentially expressed genes between animal and vegetal blastomeres in Xenopus laevis To identify asymmetrically localized maternal mRNAs along the animal-vegetal axis in cleavage Xenopus embryos, we isolated animal and vegetal blastome Xiaopeng Ma, Guanni Sun, Zhirui Hu, Zheying Min, Xiaohua Yan, Zhenpo Guan, Hanxia Su, Yu Fu, YeGuang Chen, Michael Zhang, Qinghua Tao, Wei Wu RNAseq of animal and vegetal blastomeres with 2 biological replicates 26013826 50741 SRP058428 SRR2029779 https://sra-download.ncbi.nlm.nih.gov/traces/sra27/SRR/001982/SRR2029779 GSM1689109 SRA268729 SRX1030262 RNA-Seq PAIRED SRP058428 PRJNA284242 68972 2 Xiaopeng Ma The identification of differentially expressed genes between animal and vegetal blastomeres in Xenopus laevis To identify asymmetrically localized maternal mRNAs along the animal-vegetal axis in cleavage Xenopus embryos, we isolated animal and vegetal blastome Xiaopeng Ma, Guanni Sun, Zhirui Hu, Zheying Min, Xiaohua Yan, Zhenpo Guan, Hanxia Su, Yu Fu, YeGuang Chen, Michael Zhang, Qinghua Tao, Wei Wu RNAseq of animal and vegetal blastomeres with 2 biological replicates 26013826 50741 SRP058428 SRR2029780 https://sra-download.ncbi.nlm.nih.gov/traces/sra27/SRR/001982/SRR2029780 GSM1689110 SRA268729 SRX1030263 RNA-Seq PAIRED SRP058428 PRJNA284242 68972 3 Xiaopeng Ma The identification of differentially expressed genes between animal and vegetal blastomeres in Xenopus laevis To identify asymmetrically localized maternal mRNAs along the animal-vegetal axis in cleavage Xenopus embryos, we isolated animal and vegetal blastome Xiaopeng Ma, Guanni Sun, Zhirui Hu, Zheying Min, Xiaohua Yan, Zhenpo Guan, Hanxia Su, Yu Fu, YeGuang Chen, Michael Zhang, Qinghua Tao, Wei Wu RNAseq of animal and vegetal blastomeres with 2 biological replicates 26013826 50741 SRP058428 SRR2029781 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001982/SRR2029781 GSM1689111 SRA268729 SRX1030264 RNA-Seq PAIRED SRP058428 PRJNA284242 68972 4 Xiaopeng Ma The identification of differentially expressed genes between animal and vegetal blastomeres in Xenopus laevis To identify asymmetrically localized maternal mRNAs along the animal-vegetal axis in cleavage Xenopus embryos, we isolated animal and vegetal blastome Xiaopeng Ma, Guanni Sun, Zhirui Hu, Zheying Min, Xiaohua Yan, Zhenpo Guan, Hanxia Su, Yu Fu, YeGuang Chen, Michael Zhang, Qinghua Tao, Wei Wu RNAseq of animal and vegetal blastomeres with 2 biological replicates 26013826 50741 SRP058428 SRR2029782 https://sra-download.ncbi.nlm.nih.gov/traces/sra28/SRR/001982/SRR2029782 GSM1689112 SRA268729 SRX1030265 RNA-Seq PAIRED SRP058428 PRJNA284242 69701 1 Daniel Ramire-Gordillo RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM® genes for hereditary disorders of hearing and balance Purpose: To identify orthologous genes in Xenopus that are implicated in deafness and vestibular disorders in humans and to compare RNA-Seq and microa Daniel Ramire-Gordillo, Daniel Ramirez-Gordillo, TuShun Powers, Casilda Trujillo-Provencio, Jennifer van Velkinburgh, Faye Schilkey, Elba Serrano Inner ear RNA from X. laevis larval stages 56-58 was isolated and shipped to the National Center for Genome Resources, for Illumina-Solexa sequencing or to the Massachusetts Institute of Technology BioMicro Center for microarray analysis with the Affymetrix GeneChip® X. laevis Genome 2.0 Array. RNA-Sequencing was completed using the Illumina-Solexa platform for sequencing by synthesis. Short-insert paired end (SIPE) libraries were prepared from total RNA according to Illumina’s mRNA-Seq Sample Prep Protocol v2.0 (Illumina, San Diego, CA, USA). The resultant double-stranded cDNA concentration was measured on a NanoDrop spectrophotometer, and size and purity were determined on the 2100 Bioanalyzer using a DNA 1000 Nano kit. The cDNA libraries were cluster amplified on Illumina flowcells, sequenced on the GAII Sequencer as 36-cycle single-end reads, and processed using Illumina software v1.0. Illumina reads were aligned to the X. tropicalis genome using the algorithm for genomic mapping and alignment program (GMAP) and Alpheus® Sequence Variant Detection System v3.1. 26582541 51592 SRP059283 SRR2057655 https://sra-download.ncbi.nlm.nih.gov/traces/sra29/SRR/002009/SRR2057655 GSM1707665 SRA272228 SRX1054490 RNA-Seq SINGLE SRP059283 PRJNA286217 71006 1 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105075 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105075 GSM1825040 SRA278301 SRX1099252 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 2 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105076 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105076 GSM1825041 SRA278301 SRX1099254 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 3 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105077 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105077 GSM1825042 SRA278301 SRX1099255 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 4 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105078 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105078 GSM1825043 SRA278301 SRX1099256 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 5 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105079 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105079 GSM1825044 SRA278301 SRX1099257 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 6 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105080 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105080 GSM1825045 SRA278301 SRX1099258 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 7 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105081 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105081 GSM1825046 SRA278301 SRX1099259 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 8 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105082 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105082 GSM1825047 SRA278301 SRX1099260 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 9 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105083 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105083 GSM1825048 SRA278301 SRX1099261 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 10 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105084 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105084 GSM1825049 SRA278301 SRX1099262 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 11 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105085 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105085 GSM1825050 SRA278301 SRX1099263 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 12 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105086 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105086 GSM1825051 SRA278301 SRX1099264 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 13 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105087 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105087 GSM1825052 SRA278301 SRX1099265 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 14 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105088 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105088 GSM1825053 SRA278301 SRX1099266 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 15 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105089 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105089 GSM1825054 SRA278301 SRX1099267 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 16 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105090 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105090 GSM1825055 SRA278301 SRX1099268 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 17 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105091 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105091 GSM1825056 SRA278301 SRX1099269 RNA-Seq PAIRED SRP061238 PRJNA290093 71006 18 Ferdinand Marlétaz Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xe Ferdinand Marlétaz, Harv Isaacs, Peter Holland Stage 14 (early neurula) embryos derived from eggs injected with morpholinos against Cdx1, Cdx2, Cdx4 and a mixture of all three plus corresponding uninjected embryos. All in triplicates. 26231746 51076 SRP061238 SRR2105092 https://sra-download.ncbi.nlm.nih.gov/traces/sra32/SRR/002055/SRR2105092 GSM1825057 SRA278301 SRX1099270 RNA-Seq PAIRED SRP061238 PRJNA290093 72657 1 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230067 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230067 GSM1867400 SRA293747 SRX1178590 ChIP-Seq SINGLE SRP063109 PRJNA294599 72657 2 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230068 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230068 GSM1867401 SRA293747 SRX1178591 ChIP-Seq SINGLE SRP063109 PRJNA294599 72657 3 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230069 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230069 GSM1867402 SRA293747 SRX1178592 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 4 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230070 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230070 GSM1867403 SRA293747 SRX1178593 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 5 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230071 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230071 GSM1867404 SRA293747 SRX1178594 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 6 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230072 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230072 GSM1867405 SRA293747 SRX1178595 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 7 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230073 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230073 GSM1867406 SRA293747 SRX1178596 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 8 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230074 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230074 GSM1867407 SRA293747 SRX1178597 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 9 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230075 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230075 GSM1867408 SRA293747 SRX1178598 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 10 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230076 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230076 GSM1867409 SRA293747 SRX1178599 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 11 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230077 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230077 GSM1867410 SRA293747 SRX1178600 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 12 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230078 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230078 GSM1867411 SRA293747 SRX1178601 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 13 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230079 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230079 GSM1867412 SRA293747 SRX1178602 RNA-Seq PAIRED SRP063109 PRJNA294599 72657 14 Stefan Hoppler Tissue- and stage-specific cellular context regulates Wnt target gene expression subsequent to β-catenin recruitment The aim of our study is to identify direct target genes of Wnt/β-catenin signaling operating in gastrula-stage X. tropicalis embryos. We characterized Stefan Hoppler, Yukio Nakamura, Eduardo Alves For ChIP-seq, one ChIP DNA and one input control DNA samples pooled from three independent ChIP experiments using early gastrula embryos were sequenced. For RNA-seq, Twelve total RNA samples (triplicates of each experimental samples: uninjected, CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected) from early gastrula embryos were sequenced. 27068107 52077 SRP063109 SRR2230080 https://sra-download.ncbi.nlm.nih.gov/traces/sra33/SRR/002177/SRR2230080 GSM1867413 SRA293747 SRX1178603 RNA-Seq PAIRED SRP063109 PRJNA294599 73419 1 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515135 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515135 GSM1893239 SRA300938 SRX1286458 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 2 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515136 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515136 GSM1893240 SRA300938 SRX1286459 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 3 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515137 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515137 GSM1893241 SRA300938 SRX1286460 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 4 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515138 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515138 GSM1893242 SRA300938 SRX1286461 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 5 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515139 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515139 GSM1893243 SRA300938 SRX1286462 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 6 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515140 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515140 GSM1893244 SRA300938 SRX1286463 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 7 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515141 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515141 GSM1893245 SRA300938 SRX1286464 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 8 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515142 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515142 GSM1893246 SRA300938 SRX1286465 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 9 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515143 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515143 GSM1893247 SRA300938 SRX1286466 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 10 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515144 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515144 GSM1893248 SRA300938 SRX1286467 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 11 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515145 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515145 GSM1893249 SRA300938 SRX1286468 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 12 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515146 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515146 GSM1893250 SRA300938 SRX1286469 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 13 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515147 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515147 GSM1893251 SRA300938 SRX1286470 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 14 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515148 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515148 GSM1893252 SRA300938 SRX1286471 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 15 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515149 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515149 GSM1893253 SRA300938 SRX1286472 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 16 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515150 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515150 GSM1893254 SRA300938 SRX1286473 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 17 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515151 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515151 GSM1893255 SRA300938 SRX1286474 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 18 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515152 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515152 GSM1893256 SRA300938 SRX1286475 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 19 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515153 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515153 GSM1893257 SRA300938 SRX1286476 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 20 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515154 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515154 GSM1893258 SRA300938 SRX1286477 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 21 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515155 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515155 GSM1893259 SRA300938 SRX1286478 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 22 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515156 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515156 GSM1893260 SRA300938 SRX1286479 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 23 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515157 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515157 GSM1893261 SRA300938 SRX1286480 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 24 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515158 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515158 GSM1893262 SRA300938 SRX1286481 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 25 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515159 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515159 GSM1893263 SRA300938 SRX1286482 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 26 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515160 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515160 GSM1893264 SRA300938 SRX1286483 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 27 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515161 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515161 GSM1893265 SRA300938 SRX1286484 RNA-Seq PAIRED SRP064167 PRJNA296921 73419 28 Taejoon Kwon Tissue gene expression of Xenopus laevis J strain [tissue] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. Th Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole tissue; two female frogs were used as donors for most tissues (Taira dataset for one frog, Ueno dataset for the other frog); testis samples were collected from two male frogs (sibling of two female donors) 27762356 52612 SRP064167 SRR2515162 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002456/SRR2515162 GSM1893266 SRA300938 SRX1286485 RNA-Seq PAIRED SRP064167 PRJNA296921 73430 1 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517972 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517972 GSM1893583 SRA300995 SRX1287707 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 2 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517973 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517973 GSM1893584 SRA300995 SRX1287708 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 3 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517974 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517974 GSM1893585 SRA300995 SRX1287709 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 4 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517975 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517975 GSM1893586 SRA300995 SRX1287710 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 5 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517976 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517976 GSM1893587 SRA300995 SRX1287711 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 6 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517977 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517977 GSM1893588 SRA300995 SRX1287712 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 7 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517978 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517978 GSM1893589 SRA300995 SRX1287713 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 8 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517979 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517979 GSM1893590 SRA300995 SRX1287714 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 9 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517980 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517980 GSM1893591 SRA300995 SRX1287715 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 10 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517981 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517981 GSM1893592 SRA300995 SRX1287716 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 11 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517982 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517982 GSM1893593 SRA300995 SRX1287717 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 12 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517983 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517983 GSM1893594 SRA300995 SRX1287718 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 13 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517984 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517984 GSM1893595 SRA300995 SRX1287719 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 14 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517985 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517985 GSM1893596 SRA300995 SRX1287720 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 15 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517986 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517986 GSM1893597 SRA300995 SRX1287721 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 16 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517987 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517987 GSM1893598 SRA300995 SRX1287722 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 17 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517988 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517988 GSM1893599 SRA300995 SRX1287723 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 18 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517989 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517989 GSM1893600 SRA300995 SRX1287724 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 19 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517990 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517990 GSM1893601 SRA300995 SRX1287725 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 20 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517991 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517991 GSM1893602 SRA300995 SRX1287726 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 21 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517992 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517992 GSM1893603 SRA300995 SRX1287727 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 22 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517993 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517993 GSM1893604 SRA300995 SRX1287728 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 23 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517994 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517994 GSM1893605 SRA300995 SRX1287729 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 24 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517995 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517995 GSM1893606 SRA300995 SRX1287730 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 25 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517996 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517996 GSM1893607 SRA300995 SRX1287731 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 26 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517997 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517997 GSM1893608 SRA300995 SRX1287732 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 27 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517998 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517998 GSM1893609 SRA300995 SRX1287733 RNA-Seq PAIRED SRP064186 PRJNA296953 73430 28 Taejoon Kwon Developmental gene expression of Xenopus laevis J strain [stage] Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genom Taejoon Kwon, Shuji Takahashi, Yutaka Suzuki, Atsushi Toyoda, Naoto Ueno, Masanori Taira Collect mRNA from whole embryos; two clutches were used (Taira dataset for one pair, Ueno dataset for the other pair) 27762356 52612 SRP064186 SRR2517999 https://sra-download.ncbi.nlm.nih.gov/traces/sra34/SRR/002458/SRR2517999 GSM1893610 SRA300995 SRX1287734 RNA-Seq PAIRED SRP064186 PRJNA296953 73870 1 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589787 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589787 GSM1904663 SRA304013 SRX1319030 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 2 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589788 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589788 GSM1904664 SRA304013 SRX1319031 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 3 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589789 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589789 GSM1904665 SRA304013 SRX1319032 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 4 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589790 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589790 GSM1904666 SRA304013 SRX1319033 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 5 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589791 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589791 GSM1904667 SRA304013 SRX1319034 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 6 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589792 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589792 GSM1904668 SRA304013 SRX1319035 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 7 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589793 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589793 GSM1904669 SRA304013 SRX1319036 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 8 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589794 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589794 GSM1904670 SRA304013 SRX1319037 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 9 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589795 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589795 GSM1904671 SRA304013 SRX1319038 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 10 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589796 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589796 GSM1904672 SRA304013 SRX1319039 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 11 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589797 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589797 GSM1904673 SRA304013 SRX1319040 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 12 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589798 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589798 GSM1904674 SRA304013 SRX1319041 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 13 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589799 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589799 GSM1904675 SRA304013 SRX1319042 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 14 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589800 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589800 GSM1904676 SRA304013 SRX1319043 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 15 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589801 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589801 GSM1904677 SRA304013 SRX1319044 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 16 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589802 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589802 GSM1904678 SRA304013 SRX1319045 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 17 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589803 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002529/SRR2589803 GSM1904679 SRA304013 SRX1319046 RNA-Seq PAIRED SRP064629 PRJNA298254 73870 18 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [polyA] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by Poly(A) extraction using Dynabeads (invitrogen) and the EpiCenter ScripSeq kit V1 using 50-300ng input RNA, and 10 cycles amplification. 26555057 51556 SRP064629 SRR2589804 https://sra-download.ncbi.nlm.nih.gov/traces/sra19/SRR/002529/SRR2589804 GSM1904680 SRA304013 SRX1319047 RNA-Seq PAIRED SRP064629 PRJNA298254 73904 1 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614099 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614099 GSM1905637 SRA304196 SRX1325663 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 2 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614100 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614100 GSM1905638 SRA304196 SRX1325665 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 3 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614101 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614101 GSM1905639 SRA304196 SRX1325666 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 4 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614102 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614102 GSM1905640 SRA304196 SRX1325667 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 5 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614103 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614103 GSM1905641 SRA304196 SRX1325668 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 6 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614104 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614104 GSM1905642 SRA304196 SRX1325669 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 7 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614105 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614105 GSM1905643 SRA304196 SRX1325670 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 8 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614106 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614106 GSM1905644 SRA304196 SRX1325671 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 9 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614107 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614107 GSM1905645 SRA304196 SRX1325672 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 10 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614108 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614108 GSM1905646 SRA304196 SRX1325673 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 11 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614109 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614109 GSM1905647 SRA304196 SRX1325674 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 12 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614110 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614110 GSM1905648 SRA304196 SRX1325675 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 13 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614111 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614111 GSM1905649 SRA304196 SRX1325676 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 14 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614112 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614112 GSM1905650 SRA304196 SRX1325677 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 15 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614113 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614113 GSM1905651 SRA304196 SRX1325678 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 16 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614114 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614114 GSM1905652 SRA304196 SRX1325679 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 17 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614115 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614115 GSM1905653 SRA304196 SRX1325680 RNA-Seq PAIRED SRP064686 PRJNA298393 73904 18 Esther Pearl On the relationship of protein and mRNA dynamics in vertebrate embryonic development [RiboZero] A biochemical explanation of development from the fertilized egg to the adult anatomy requires an understanding of the complement of proteins and RNAs Esther Pearl, Leonid Peshkin, Martin Wuhr, Esther Pearl, Wilhelm Haas, Robert Freeman, John Gerhart, Allon Klein, Marko Horb, Steven Gygi, Marc Kirscher mRNA from 18 samples each at a different developmental stage. Libraries were constructed using RNA enriched for mRNA by rRNA depletion using the EpiCenter RiboZero kit and the EpiCenter ScripSeq kit V2 using 50ng input RNA, and 12 cycles amplification. 26555057 51556 SRP064686 SRR2614116 https://sra-download.ncbi.nlm.nih.gov/traces/sra20/SRR/002552/SRR2614116 GSM1905654 SRA304196 SRX1325681 RNA-Seq PAIRED SRP064686 PRJNA298393 74184 1 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732219 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732219 GSM1912879 SRA306257 SRX1356590 OTHER SINGLE SRP065025 PRJNA299278 74184 2 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732220 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732220 GSM1912880 SRA306257 SRX1356591 OTHER SINGLE SRP065025 PRJNA299278 74184 3 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732221 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732221 GSM1912881 SRA306257 SRX1356592 OTHER SINGLE SRP065025 PRJNA299278 74184 4 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732222 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732222 GSM1912882 SRA306257 SRX1356593 OTHER SINGLE SRP065025 PRJNA299278 74184 5 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732223 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732223 GSM1912883 SRA306257 SRX1356594 OTHER SINGLE SRP065025 PRJNA299278 74184 6 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732224 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732224 GSM1912884 SRA306257 SRX1356595 OTHER SINGLE SRP065025 PRJNA299278 74184 7 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732225 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732225 GSM1912885 SRA306257 SRX1356596 OTHER SINGLE SRP065025 PRJNA299278 74184 8 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732226 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732226 GSM1912886 SRA306257 SRX1356597 OTHER SINGLE SRP065025 PRJNA299278 74184 9 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732227 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732227 GSM1912887 SRA306257 SRX1356598 OTHER SINGLE SRP065025 PRJNA299278 74184 10 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732228 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/002668/SRR2732228 GSM1912888 SRA306257 SRX1356599 OTHER SINGLE SRP065025 PRJNA299278 74184 11 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732229 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732229 GSM1912889 SRA306257 SRX1356600 OTHER SINGLE SRP065025 PRJNA299278 74184 12 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732230 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732230 GSM1912890 SRA306257 SRX1356601 OTHER SINGLE SRP065025 PRJNA299278 74184 13 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732231 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732231 GSM1912891 SRA306257 SRX1356602 OTHER SINGLE SRP065025 PRJNA299278 74184 14 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732232 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732232 GSM1912892 SRA306257 SRX1356603 OTHER SINGLE SRP065025 PRJNA299278 74184 15 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732233 https://sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/002668/SRR2732233 GSM1912893 SRA306257 SRX1356604 OTHER SINGLE SRP065025 PRJNA299278 74184 16 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732234 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732234 GSM1912894 SRA306257 SRX1356605 OTHER SINGLE SRP065025 PRJNA299278 74184 17 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732235 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732235 GSM1912895 SRA306257 SRX1356606 OTHER SINGLE SRP065025 PRJNA299278 74184 18 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732236 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732236 GSM1912896 SRA306257 SRX1356607 OTHER SINGLE SRP065025 PRJNA299278 74184 19 Charles Bradshaw Methylome analysis of deoxyadenosines in higher eukaryotes Here, we report that we detected N-6-methyl-deoxyadenosine (dA6m) not only in frog DNA, but also in other species including mouse and humans. Our meth Charles Bradshaw, Magdalena Koziol, Charles Bradshaw, George Allen, Ana Costa, Christian Frezza, John Gurdon Determining regions of deoxyadenosine methylation in M. musculus kidney and X. laevis fat, oviduct and testes 26689968 51669 SRP065025 SRR2732237 https://sra-download.ncbi.nlm.nih.gov/traces/sra11/SRR/002668/SRR2732237 GSM1912897 SRA306257 SRX1